Trace Detection of Pb(II) using Square Wave Anodic Stripping Voltammetry with Stainless Steel Electrodes
Abstract
Lead (Pb(II)) is well known as a dangerous environmental contaminant that harms public health worldwide. Early Pb(II) detection before release into the water system is important. This work describes an inexpensive Pb(II) determination using 5 mm diameter stainless steel rod type 304 as a working electrode. Using a batch system, the research employed 10 mL of 0.1 M acetate buffer at pH 4.5. The best operation was at a deposition potential of -1.2V for 300 s. It provides a linear range in the concentration range of 0.075 – 1 µg/mL Pb(II) (r = 0.994). The limit of detection (LOD) and limit of quantification (LOQ) of Pb(II) were at 0.057 µg/mL and 0.189 µg/mL, respectively. Repeatability and reproducibility were expressed in the relative standard deviation range of 1.26-3.71% in the testing a Pb(II) concentration range of 0.2-1.0 µg/mL and 5.32% in testing a Pb(II) concentration of 0.4 µg/mL. A very low-cost stainless-steel electrode proposed a high operational stability up to 10 measurements with RSD of 4.39%.
Keywords
Full Text:
PDFReferences
Abollino, O., Giacomino, A., and Malandrino, M., 2019. Voltammetry | Stripping Voltammetry. Encyclopedia of Analytical Science, 238–257. https://doi.org/10.1016/B978-0-12-409547-2.14491-9.
AOAC., 2012. Guidelines for Standard Method Performance Requirements. In: ANALYSIS, A. O. M. O. (ed.). Association of Official Analytical Chemists.
Bjørklund, G., Tippairote, T., Hangan, T., Chirumbolo, S., and Peana, M., 2023. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Current Medicinal Chemistry, 31(13), 1620–1633. https://doi.org/10.2174/0929867330666230409135310.
Boskabady, M., Marefati, N., Farkhondeh, T., Shakeri, F., Farshbaf, A., and Boskabady, M. H., 2018. The Effect of Environmental Lead Exposure on Human Health and the Contribution of Inflammatory Mechanisms, A Review. Environment International, 120, 404–420. https://doi.org/10.1016/J.ENVINT.2018.08.013.
Chen, A. Y., Ruan, H. H., Wang, J., Chan, H. L., Wang, Q., Li, Q., and Lu, J., 2011. The Influence of Strain Rate on The Microstructure Transition of 304 Stainless Steel. Acta Materialia, 59(9), 3697–3709. https://doi.org/10.1016/J.ACTAMAT.2011.03.005.
Ericson, B., Hariojati, N., Susilorini, B., Crampe, L. F., Fuller, R., Taylor, M. P., and Caravanos, J., 2019. Assessment of The Prevalence of Lead-Based Paint Exposure Risk in Jakarta, Indonesia. Science of The Total Environment, 657, 1382–1388. https://doi.org/10.1016/J.SCITOTENV.2018.12.154.
Exposure to Lead: A Major Public Health Concern. 2019. World Health Organization. <https://iris.who.int/bitstream/handle/10665/329953/WHO-CED-PHE-EPE-19.4.7-eng.pdf>.
Ferreira, R., Chaar, J., Baldan, M., and Braga, N., 2021. Simultaneous Voltammetric Detection of Fe3+, Cu2+, Zn2+, Pb2+ and Cd2+ in Fuel Ethanol Using Anodic Stripping Voltammetry and Boron-Doped Diamond Electrodes. Fuel, 291, 120104. https://doi.org/10.1016/J.FUEL.2020.120104.
Forsyth, J. E., Weaver, K. L., Maher, K., Islam, M. S., Raqib, R., Rahman, M., Fendorf, S., and Luby, S. P., 2019. Sources of Blood Lead Exposure in Rural Bangladesh. Environmental Science and Technology, 53(19), 11429–11436. https://doi.org/10.1021/acs.est.9b00744.
Gardner, L. 2019. Stability and Design of Stainless Steel Structures – Review And Outlook. Thin-Walled Structures, 141, 208–216. https://doi.org/10.1016/J.TWS.2019.04.019.
Giao, N. Q., Dang, V. H., Yen, P. T. H., Phong, P. H., Ha, V. T. T., Duy, P. K., and Chung, H., 2019. Au Nanodendrite Incorporated Graphite Pencil Lead as A Sensitive and Simple Electrochemical Sensor for Simultaneous Detection of Pb(II), Cu(II) and Hg(II). Journal of Applied Electrochemistry, 49(8), 839–846. https://doi.org/10.1007/S10800-019-01326-X.
Hermas, A. A., and Morad, M. S., 2008. A Comparative Study on The Corrosion Behaviour of 304 Austenitic Stainless Steel in Sulfamic and Sulfuric Acid Solutions. Corrosion Science, 50(9), 2710–2717. https://doi.org/10.1016/J.CORSCI.2008.06.029.
Kamel, M., El-Fatah, G. A., Zaky, M., Zaher, A., Farghali, A., Othman, S. I., Allam, A., Rudayni, H. A., Hassouna, M. E. M., and Mahmoud, R., 2023. Innovations in Electrochemical Sensors for Lead Ion Detection: Applications in Wastewater Treatment and Cytotoxicity Assessment. https://doi.org/10.20944/PREPRINTS202310.1287.V1.
Lameche, S., Berrabah, S. E., Benchettara, A., Tabti, S., Manseri, A., Djadi, D., and Bardeau, J. F., 2023. One-step Electrochemical Elaboration of SnO2 Modified Electrode for Lead Ion Trace Detection in Drinking Water Using SWASV. Environmental Science and Pollution Research, 30(15), 44578–44590. https://doi.org/10.1007/S11356-023-25517-4/METRICS.
Lee, J. W., Choi, H., Hwang, U. K., Kang, J. C., Kang, Y. J., Kim, K. I., and Kim, J. H., 2019. Toxic Effects of Lead Exposure on Bioaccumulation, Oxidative Stress, Neurotoxicity, and Immune Responses in Fish: A Review. Environmental Toxicology and Pharmacology, 68, 101–108. https://doi.org/10.1016/J.ETAP.2019.03.010.
Mallongi, A., Palutturi, S., and Daud, A., 2023. Calculating the Potential Risks of Environmental and Communities Health due to Lead Contaminants Exposure A Systematic Review. Journal of Pharmaceutical Negative Results, 14(1), 68–76. https://doi.org/10.47750/PNR.2023.14.01.011.
Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., Kappl, R., and Hoth, M., 2013. Square-Wave Voltammetry: A Review on the Recent Progress. Electroanalysis, 25(11), 2411–2422. https://doi.org/10.1002/ELAN.201300369.
Obeng-Gyasi, E., 2019. Sources of lead exposure in various countries. Reviews on Environmental Health, 34(1), 25–34. https://doi.org/10.1515/REVEH-2018-0037/MACHINEREADABLECITATION/RIS.
Oztekin, Y., Ramanaviciene, A., Ryskevic, N., Yazicigil, Z., Üstünda, Z., Solak, A. O., and Ramanavicius, A., 2011. 1,10-Phenanthroline Modified Glassy Carbon Electrode for Voltammetric Determination of Cadmium(II) Ions. Sensors and Actuators, B: Chemical, 157(1), 146–153. https://doi.org/10.1016/J.SNB.2011.03.041.
Phal, S., Nguyễn, H., Berisha, A., and Tesfalidet, S., 2021. In Situ Bi/carboxyphenyl-modified Glassy Carbon Electrode as A Sensor Platform for Detection of Cd2+ and Pb2+ Using Square Wave Anodic Stripping Voltammetry. Sensing and Bio-Sensing Research, 34, 100455. https://doi.org/10.1016/J.SBSR.2021.100455.
Pizarro, J., Segura, R., Tapia, D., Navarro, F., Fuenzalida, F., and Jesús Aguirre, M., 2020. Inexpensive and Green Electrochemical Sensor for The Determination of Cd(II) and Pb(II) by Square Wave Anodic Stripping Voltammetry in Bivalve Mollusks. Food Chemistry, 321, 126682. https://doi.org/10.1016/J.FOODCHEM.2020.126682.
Radojković, B. M., Jegdić, B. V., Marunkić, D. D., Pejić, J. N., Simović, A. R., Ćosović, V. R., and Bajat, J. B., 2023. Non-Destructive Evaluation of the AISI 304 Stainless Steel Susceptibility to Intergranular Corrosion by Electrical Conductivity Measurements. Metals and Materials International, 30, 682–696. https://doi.org/10.1007/S12540-023-01536-1.
Rodrigues, J. A., Rodrigues, C. M., Almeida, P. J., Valente, I. M., Gonçalves, L. M., Compton, R. G., and Barros, A. A., 2011. Increased Sensitivity of Anodic Stripping Voltammetry at The Hanging Mercury Drop Electrode by Ultracathodic Deposition. Analytica Chimica Acta, 701(2), 152–156. https://doi.org/10.1016/J.ACA.2011.05.031.
Satarug, S., Gobe, G. C., Vesey, D. A., and Phelps, K. R., 2020. Cadmium and Lead Exposure, Nephrotoxicity, and Mortality. Toxics, 8(4), 86. https://doi.org/10.3390/TOXICS8040086.
Sumarji, S., 2011. Studi Perbandingan Ketahanan Korosi Stainless Steel Tipe SS 304 dan SS 201 Menggunakan Metode U-Bend Test Secara Siklik Dengan Variasi Suhu dan pH. ROTOR: Jurnal Ilmiah Teknik Mesin, 4(1).
Suroso, I., 2017. Analisis Secara Fisis dan Mekanis Pasir Besi Dari Pantai Selatan Kulonprogo Berguna Bagi Material Pesawat Terbang. Teknika STTKD: Jurnal Teknik, Elektronik, Engine, 4(1), 26–38.
Švancara, I., Prior, C., Hočevar, S. B., and Wang, J., 2010. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis, 22(13), 1405–1420. https://doi.org/10.1002/ELAN.200970017.
Thangavelu, K., Palanisamy, S., Chen, S.-M., Velusamy, V., Chen, T.-W., and Ramaraj, S. K., 2016. Electrochemical Determination of Caffeic Acid in Wine Samples Using Reduced Graphene Oxide/Polydopamine Composite. Journal of The Electrochemical Society, 163(14), B726–B731. https://doi.org/10.1149/2.1231614JES.
Wan, H., Sun, Q., Li, H., Sun, F., Hu, N., and Wang, P., 2015. Screen-printed Gold Electrode with Gold Nanoparticles Modification for Simultaneous Electrochemical Determination of Lead and Copper. Sensors and Actuators B: Chemical, 209, 336–342. https://doi.org/10.1016/J.SNB.2014.11.127.
Wang, R., Ji, W., Huang, L., Guo, L., and Wang, X., 2019. Electrochemical Determination of Lead(II) in Environmental Waters Using a Sulfydryl Modified Covalent Organic Framework by Square Wave Anodic Stripping Voltammetry (SWASV). Analytical Letters, 52(11), 1757–1770. https://doi.org/10.1080/00032719.2019.1568448.
Wong, A., A. Ferreira, P., Santos, A. M., Cincotto, F. H., Silva, R. A. B., and Sotomayor, M. D. P. T., 2020. A New Electrochemical Sensor Based On Eco-Friendly Chemistry for The Simultaneous Determination of Toxic Trace Elements. Microchemical Journal, 158, 105292. https://doi.org/10.1016/J.MICROC.2020.105292.
Zamhari, M., Numnuam, A., Limbut, W., Kanatharana, P., and Thavarungkul, P., 2017. Simultaneous Electrochemical Detection of Co(II) and Cu(II) by 1-Diazo-2-Naphthol-4-Sulfonic Acid/MWCNTs Modified Electrode. Electroanalysis, 29(10), 2348–2357. https://doi.org/10.1002/ELAN.201700237.
Zheng, K., Zeng, Z., Tian, Q., Huang, J., Zhong, Q., and Huo, X., 2023. Epidemiological Evidence for The Effect of Environmental Heavy Metal Exposure on The Immune System in Children. Science of The Total Environment, 868, 161691. https://doi.org/10.1016/J.SCITOTENV.2023.161691.
Zhou, S. F., Han, X. J., and Liu, Y. Q., 2016. SWASV Performance toward Heavy Metal Ions Based on A High-Activity and Simple Magnetic Chitosan Sensing Nanomaterials. Journal of Alloys and Compounds, 684, 1–7. https://doi.org/10.1016/J.JALLCOM.2016.05.152.
Refbacks
- There are currently no refbacks.