TRANSFORMASI ETIL P-METOKSISINAMAT MENJADI ASAM P -METOKSISINAMAT DARI KENCUR (Kaempheria galanga L.) BESERTA UJI AKTIVITAS ANTIBAKTERINYA

muhamad salman fareza

Abstract

Penelitian ini bertujuan untuk mengevaluasi sifat antibakteri senyawa turunan asam sinamat dari rimpang kencur (Kaempheria galanga L.) yaitu etil p-metoksisinamat  dan asam-p-metoksi sinamat. Etil p-metoksisinamat merupakan seyawa hasil isolasi yang diperoleh dari ekstrak n-heksan rimpang kencur. Pemisahan dan pemurnian snyawa tersebut dilakukan dengan menggunakan metode kromatografi cair vakum dan kromatografi kolom. Hidrolisis etil-p-metoksi sinamat dalam suasana basa menghasilkan asam-p-metoksi sinamat dengan rendemen 85%. Karakterisasi kedua senyawa dilakukan dengan menggunakan spektrofotometer NMR (1H-NMR dan 13C-NMR) dan spektrofotometer massa. Evaluasi sifat antibakteri kedua senyawa dilakukan dengan menggunakan metode mikrodilusi terhadap beberapa bakteri Gram-(+) dan Gram-(-). Senyawa yang didapatkan memperlihatkan sifat antibakteri yang lemah. Hanya etil p-metoksisinamat yang menunjukkan aktivitas antibakteri yang paling kuat khususnya terhadap bakteri Bacillus cereus dengan nilai MIC 62,5 µg/mL. Adanya perubahan gugus fungsi tampaknya tidak terlalu memberikan pengaruh signifikan terhadap peningkatan aktivitas antibakterinya.

Keywords

Etil p-metoksisinamat, Asam p-metoksisinamat, Kaempheria galanga L., Antibakteri.

References

Abdallah, E.M., 2011. Plants: An Alternative Source for Antimicrobial. Journal Applied Pharmaceutical Science, 01(06), 16-20. Retrived from www.japsonline.com/admin/php/uploads/118_pdf.pdf.

Alanis, A.J., 2005. Resistance to Antibiotics: Are We in The Post-antibiotic Era?. Archives of Medicinal Research, 36(0), 697–705. doi: 10.1016/j.arcmed.2005.06.009.

Al-zoreky, N. S. and Al-Taher, A. Y., 2015. Antibacterial Activity of Spathe from Phoenix dactylifera L. Against Some Food-borne Pathogens. Industrial crops and products, 65(0), 241-246. doi: http://dx.doi.org/10.1016/j.indcrop.2014.12.014

Arambewela, L. S. R., Perera, A., and Wijesundera, R. L. C., 1999. Antibacterial Activity of Kaempheria galanga. Fitoterapia, 70(0), 425-427. doi: http://dx.doi.org/10.1016/S0367-326X(99)00053-2.

Arias, C.A. and Murray, B.E., 2015. A New Antibiotic and The Evolution of Resistance. The New England Journal of Medicine, 372(12), 1168-1170. Doi: 10.1056/NEJMcibr1500292.

Badan Pengawas Obat dan Makanan RI., 2013. Dokumentasi Ramuan Etnomedisin Obat Asli Indonesia. Jakarta: BPOM RI.

Baris, O., Gulluce, M., Sahin, F., Ozer, H., Kilie, H., Ozkan, H., Sokmen, M., and Ozbek, T., 2006. Biological Activities of The Essential Oil and Methanol Extract of Achillea biebersteinii Afan. (Asterceae). Turkish Journal of Biology, 30(0), 65-73.

CLSI (Clinical and Laboratory Standards Institute), 2012. Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically: Approved Standars (9th ed.). CLSI Document M07-A9. USA: Wayne PA

Dash, P. R., Nasrin, M., and Ali, M. S., 2014. In Vivo Cytotoxic and In Vitro Antibacterial Activities of Kaempheria galanga. Journal of Pharmacognosy and Phytochemistry, 3(1), 172-177. Retrived from http://www.phytojournal.com/vol3Issue1/49.1.html

Davin-Regli, A. and Pages, J., 2015. Enterobacter aerogenes and Enterobacter cloaceae; Versatile Bacterial Pathogens Confronting Antibiotic Treatment. Frontiers in Microbiology, 6 (392), 1-10. Doi: 10.3389/fmicb.2015.00392.

Elder, D. P., Kuents, M., and Holm, R., 2016. Antibiotic Resistance: The Need for A Global Strategy. Journal of Pharmaceutical Sciences, 105(8), 2278-2287. Doi http://dx.doi.org/10.1016/j.xphs.2016.06.002.

Ekowati, J., Rudyanto, Sasaki, S., Budiati, T., Sukardiman, Hermawan, A., and Meiyanto, E., 2010. Structure Modification of Ethyl p-methoxycinnamate Isolated from Kaempferia galanga Linn. and Citotoxicity Assay of The Products on WiDr Cells. Indonesian Journal of Cancer Chemoprevention, 1(1), 12-18. Retrived from http://ccrc.farmasi.ugm.ac.id/wp-content/uploads/2-3-1-SM.pdf.

Eloff, J. N., 1998. A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Med. 64(8), 711-713. doi: 10.1055/s-2006-957563.

Guillemot, D. 1999. Antibiotic Use in Humans and Bacterial Resistance. Current Opinion Microbiology, 2(0), 494-498. doi: 10.1016/S1369-5274(99)00006-5.

Hardman, J.G. and Limbird, L.E., 2012. Goodman and Gilman: Dasar farmakologi terapi, Edisi 10 (Terjemahan), Jakarta: EGC Penerbit Buku Kedokteran.

He, Z., Yue, G. G. , Lau, C. B., Ge, W., and But, P. P., 2012. Antiangiogenic Effects and Mechanisms of Trans-ethyl p‑methoxycinnamate from Kaempferia galanga L. Journal of Agricultural and Food Chemistry, 60(0), 11309-11317. doi: dx.doi.org/10.1021/jf304169jl.

Huang, L., Yagura, T., and Chen, S., 2008. Sedative Activity of Hexane Extract of Keampferia galanga L. and Its Active Compounds. Journal of Ethnopharmacology, 120(0), 123-125. doi: 10.1016/j.jep.2008.07.045.

Kochuthressia, K. P., Britto, S. J., Mo, J., and Raphael, R., 2012. In Vitro Antimicrobial Evaluation of Kaempheria galanga L. Rhizome Extract. American Journal Biotechnology and Molecular Sciences, 2(1), 1-5. doi: 10.5251/ajbma.2012.2.1.1.5.

Laksmanan, D., Werngren, J., Jose, L., Suja, K. P., Nair, M. S., Varma, R. L., Mundayoor, S., and Kumar, R. A., 2011. Ethyl p-methoxycinnamate Isolated from A Traditional Anti-tuberculosis Medicinal Herb Inhibits Drug Resistant Strains of Mycobacterium tuberculosis In Vitro. Fitoterapia, 82(0), 757-761. doi: 10.1016/j.fitote.2011.03.006.

Langfield, R. D., Scarano, F. J., Heitzman, M. E., Kondo, M., Hammond, G. B., and Neto, C. C., 2004. Use of A Modified Microplate Bioassay Method to Investigate Antibacterial Activity in The Peruvian Medicinal Plant Peperomia galiodes. Journal of Ethnopharmacology. 94(2-3), 279-281. doi: 10.1016/jep.2004.06.013.

Lim, T. K., 2016. Edible Medicinal and Non-medicinal Plants (Vol. 12). Switzerland: Springer.

Liu, X. C., Liang Y., Shi, W. P., Liu Q. Z., Zhou, L., and Liu, Z. L., 2014. Repellent and Insecticidal Effects of The Essential Oil of Kaempheria galanga Rhizomes to Liposcelis bostrychophila (Psocoptera: Liposcelidae). Journal of Economic Entomology, 107(4), 1706-1712. doi: http://dx.doi.org/10.1603/EC13491.

Kerns, E.D. and Di, L., 2008. Drug-Like Properties: Concepts, Structure Design and Methods From ADME to Toxicity Optimization, UK: Elsevier.

Mahady, G.B., 2005. Medical Plants for The Prevention and Treatment of Bacterial Infections. Current Pharmaceutical Design, 11(0), 2405-2427. doi: https://doi.org/10.2174/1381612054367481.

Nakazono, Y., Watanabe, Y., Hashinaga, F., and Tadera, K., 2006. Studies on Antimicrobial and Antioxidative Substance of Yuzu (Citrus junos hort. Ex Tanaka) Seed. Journal of Biological Sciences, 6(1), 135-139. Retrived from www.docsdrive.com/pdfs/ansinet/jbs/2006/135-139.pdf.

Nussbaum, F., Brands, M., HInzen, B., Weigand, S. and Habich, D., 2006. Antibacterial Natural Products in Medicinal Chemistry-Exodus or Revival?. Angewandte Chemie International Edition, 45(0), 5072-5129. doi: 10.1002/anie.200600350.

Omar, M. N., Hasali, N. H. M., Alfarra, H. Y., Yarmo, M. A., and Zuberdi, A. M., 2014. Antimicrobial Activity and Microbial Transformation of Ethyl p-methoxycinnamate Extracted from Kaempferia galanga. Oriental Journal of Chemistry, 30(3), 1037-1043. doi: http://dx.doi.org/10.13005/ojc/300315.

Pervez, M. A. K., Khan. M. M., Islam, M. Z., and Hasan, S. M., 2005. Antimicrobial Activities of The Petroleum ether, Methanol, and Acetone Extracts of Kaempheria galanga L. Rhizome. Journal of Life Earth Science, 1(1), 25-29. doi:10.1.1.566.4589.

Piddock, L.J.V., 2015. Teixobactin, The First of A New Class of Antibiotics Discovered by iChip Technology?. Journal of Antimicrobial Chemotheraphy, (0), 1-2. doi: https://doi.org/10.1093/jac/dkv175.

Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee., Y. S., Riaz, N., and Jabbar, A., 2010. Antimicrobial Natural Product: An Update on Future Antibiotic Drug Candidates, Natural Product Report, 27(0), 238-254. doi:10.1039/b916096e.

Sarker, S. D., Latif, Z., and Gray, A. I., 2006. Natural Products Isolation 2nd Ed. New Jersey: Humania Press.

Silverstein, R.M., Webster, F.X., and Kiemle, D.J., 2005. Spectrophotometric Identification of Organic Compound 7th Edition. USA: John Wiley and Sons.

Sirisngtragul, W. and Sripanidkulchai, B., 2011. Effects of Kaempferia galanga L. and Ethyl-p-methoxycinnamate (EPMC) on Hepatic Microsomal Cytochrome P450s Enzyme Activities in Mice. Songklanakarin Journal of Science and Technology, 33(4), 411-417. Retrived from rdo.psu.ac.th/sjstweb/journal/33-4/0125-3395-33-4-411-417.pdf.

Smith-Palmer, A., Stewart, J. and Fyfe, L., 1998. Antimicrobial Properties of Plant Essential Oils and Essens Against Five Important Food-borne Pathogens. Letters in Applied Microbiology, 26(0), 118-122.

Solomons, T.W.G. and Fryhle., C.B., 2011. Organic Chemistry, 10th ed. USA: John Wiley and Sons.

Syah, Y. M., 2016. Dasar-dasar Penentuan Struktur Molekul Berdasarkan Data Spektrum 1H and 13C NMR. Bandung: Laboratorium Spektroskopi Massa dan NMR ITB.

Taylor, P.W., Stapleton, P.D., and Luzio, J.P., 2002. New Ways to Threat Bacterial Infections. Drug Discovery Today, 7(0), 1086-1091. doi: 10.1016/S1359-6446(02)02498-4.

Threlfall, E. J., Ward, L. R., Frost, J. A., Willshaw, G. A., 2000. The Emergence and Spread of Antibiotic Resistance in Food-borne Bacteria. International Journal of Food Microbiology, 62(0), 1-5.

Umar, M. I., Asmawi, M. Z., Sadikun, A., Majid, A. M. S. A., Al-Suede, F. S. R., Hassan, L. E. A., Altaf, R., and Ahamed, M. B. K., 2014. Ethyl-p-methoxycinnamate Isolated from Kaempheria galanga Inhibits Inflammation by Suppressing Interleukin-1, Tumor Necrosis Factor-α, and Angiogenesis by Blocking Endothelial Functions. CLINICS, 69(2), 134-144. doi: 10.6061/clinics/2014(02)10.

Refbacks

  • There are currently no refbacks.