Konduktivitas Apatit Lantanum Silikat La9.33Si6O26 Hasil Sintesis Hidrotermal dengan Mineraliser NaOH dan KOH
Abstract
Apatit lantanum silikat banyak digunakan sebagai elektrolit pada sel bahan bakar padatan (SOFC). Beberapa oksida apatit lantanum silikat La9.33Si6O26 telah disintesis dengan metode hidrotermal guna mengamati pentingnya peranan mineraliser terhadap karakternya. Penelitian ini bertujuan untuk mengetahui pengaruh jenis dan konsentrasi mineraliser terhadap kristalinitas, ukuran partikel dan hubungannya dengan sifat konduktivitas oksida apatit lantanum silikat. Struktur, ukuran partikel dan konduktivitas oksida apatit masing-masing dikarakterisasi dengan XRD, PSA dan spektroskopi impedansi. Oksida apatit lantanum silikat diperoleh dengan melarutkan La2O3 dan Na2SiO3 dengan mol ratio 1,555 menggunakan mineraliser NaOH (3-5 M) dan KOH (0,3-0,7 M). Hasil penelitian menunjukkan bahwa kinerja elektrolit sangat ditentukan oleh kristalinitas dan morfologi apatit lanthanum silikat yang dipengaruhi oleh jenis dan konsentrasi mineralizer. Ukuran apatit lantanum silikat terkecil diperoleh dari hasil sintesis dengan menggunakan mineraliser NaOH 3 M yaitu 1,7889 µm, dengan nilai konduktivitas tertinggi yaitu 1,99×10-6 S/cm pada suhu operasi 600 ºC. Berdasarkan hasil tersebut NaOH 3 M merupakan mineraliser yang paling baik untuk menghasilkan apatit lanthanum silikat La9.33Si6O26.
Conductivity of Lanthanum Silicate Apatite Phase of La9.33Si6O26Prepared by Hydrothermal Synthesis using NaOH and KOH as Mineralizer. Lanthanum silicates are used as electrolytes in solid oxide fuel cells (SOFC). Some oxide-based apatite has been synthesized by hydrothermal method to observe mineralizer effect on the process of crystallization. The effect of type and amount of mineralizers for preparing apatite –type lanthanum silicate of La9.33Si6O26 was investigatedon its crystallinity, particle size, as well as on the conductivity properties relationship were investigated. The structure, particle size and conductivity of La9.33Si6O26 was characterized using X-ray diffraction, particle size analyzer and impedance spectroscopy respectively. The results show that the electrolyte performance is strongly dependent on the crystallinity and the morphology textural of lanthanum silicate apatite affected by the type and amount of mineralizer. The lanthanum silicate apatiteprepared by La2O3 and Na2SiO3 (molar ratio of La2O3 and Na2SiO3 = 1.555), and NaOH (3; 4; 5 M) and KOH (0,3-0,7 M) as mineralizer. As a result, apatite-type lanthanum silicate was prepare using NaOH 3 M shows smallest particle (1.7889 μm) and highest conductivity (1.99 × 10-6 S / cm at 600 ºC). With respect to both particle size and conductivity, the NaOH 3 M can be selected as a suitable type and amount mineralizer for the preparation of excellent lanthanum silicate apatite La9.33Si6O26.
Apatitlantanumsilikatbanyakdigunakansebagaielektrolitpadasel bahanbakarpadatan(SOFC). BeberapaoksidaapatitlantanumsilikatLa9.33Si6O26 telahdisintesisdenganmetodehidrotermalguna mengamati pentingnyaperananmineraliserterhadapkarakternya.Penelitianini bertujuanuntukmengetahui pengaruhjenisdan konsentrasi mineraliserterhadapkristalinitas,ukuran partikel danhubungannyadengan sifatkonduktivitasoksidaapatitlantanumsilikat.Struktur,ukuranpartikel dankonduktivitasoksidaapatit masing-masingdikarakterisasidenganXRD,PSAdan spektroskopiimpedansi.Oksidaapatitlantanumsilikat diperolehdenganmelarutkan La2O3danNa2SiO3denganmolratio1,555 menggunakanmineraliserNaOH (3-
5M)danKOH(0,3-0,7M).Hasilpenelitianmenunjukkanbahwakinerjaelektrolitsangatditentukanoleh kristalinitasdanmorfologiapatitlanthanumsilikatyangdipengaruhiolehjenisdankonsentrasimineralizer.
UkuranapatitlantanumsilikatterkecildiperolehdarihasilsintesisdenganmenggunakanmineraliserNaOH3
Myaitu1,7889µm,dengannilaikonduktivitastertinggiyaitu1,99×10-6S/cmpadasuhuoperasi600ºC. BerdasarkanhasiltersebutNaOH3Mmerupakanmineraliseryangpalingbaikuntukmenghasilkanapatit
lanthanumsilikatLa9.33Si6O26.
Keywords
Full Text:
PDFReferences
Beaudet Savignat, S., Vincent, A., Lambert, S., and Gervais, F., 2007. Oxide ion conduction in Ba, Ca and Sr doped apatite-type lanthanum silicates. Journal of Materials Chemistry 17, 2078-2087.
Célérier, S., Laberty, C., Ansart, F., Lenormand, P., Stevens, P., 2006. New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26. Ceramics International. 32. 271-276.
Chen, D., and Xiuling, J., 2000. Hydrothermal Synthesis and Charaterization of Bi 4Ti3O12 Powders from Different Precursors. Materials Research Bulletin 36, 355-363
Chen, J., Lin, L., Song, Y., and Shao, L., 2009. Influence of KOH on Hydrothermal Modification of Mg(OH)2 Crystals. Journal of Crystal Growth 311, 2405-2408.
Dell’Agli, G., Colantuono, A., and Mascolo, G., 1999. The Effect of Mineralizers on The Crystallization of Zirconia Gel Under Hydrothermal Conditions. Solid State Ionics. 123. 87-94.
Ferdov, S., Ferreira, R. A. S., and Lin, Z., 2006. Hydrothermal Synthesis, Structural Investigation, Photoluminascence Features, and Emission Quantum Yield of Eu and Eu-Gd Silicates with Apatite-Type Structure. Chemistry of Materials 18, 5958-5964.
Ferdov, S., Rauwel, P., Lin, Z., Ferreira, R. A. S., and Lopes, A., 2010. A simple and general route for the preparation of pure and high crystalline nanosized lanthanide silicates with the structure of apatite at low temperature. Journal of Solid State Chemistry 183, 2726-2730.
Hui, S. R., Justin, R., Sing, Y., Xinge, Z., Cyrille, D. P., Yongsong, X., Radenka, M., and Dave, G., 2007. A brief review of the ionic conductivity enhancement for selected oxide electrolytes. Journal of Power Sources 172, 493–502.
Nakayama, S., Aono, H., and Sadaoka, Y., 1995. Ionic Conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy). Chemistry Letters 24, 431-435.
Nakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T., and Itoh, K., 1999. Oxide ionic conductivity of apatite type Nd9·33(SiO4)6O2 single crystal. Journal of the European Ceramic Society 19, 507-510.
Noviyanti, A. R., Hastiawan, I., Irwansyah, F. S., Hidayat, S., Hardian, A., Syarif, D. G., and Yuliyati, Y. B., 2016. Preparation and Conductivity of Composite Apatite La9.33Si6O26(LSO) - Zr0.85Y0.15O1.925(YSZ) AIP Conference Proceedings 1712, 050002 (2016). Bandung Indonesia. AIP Publishing.
Noviyanti, A.R., Ismunandar, Prijambodi, B., and Marsih, I.N., 2012a. Oksida Berstruktur Apatit sebagai Elektrolit Sel Bahan Bakar Padatan. Departemen Kimia. Bandung. Institut Teknologi Bandung.
Noviyanti, A.R., Ismunandar, Prijamboedi, B., and Marsih, I.N., 2012b. Hydrothermal Preparation of Apatite-Type Phases La9.33Si6O26 and La9M1Si6O26.5 (M = Ca, Sr, Ba). ITB Journal of Science 44, 193-203.
Sansom, J.E.H., Kendrick, E., Tolchard, J.R., Islam, M.S., and Slater, P.R., 2006. A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates. Journal of Solid State Electrochemistry 10(10), 562–568.
Sansom, J. E. H., Richings, D., and Slater, P. R., 2001. A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26. Solid State Ionics 139, 205-210.
Yang, Q., Li, Y., Yin, Q., Wang, P., Cheng, Y.-B., 2003. Bi4Ti3O12 nanoparticles prepared by hydrothermal synthesis. Journal of the European Ceramic Society. 23. 161-166.
Zhao, Z., Ren, P., Li, W., and Miao, B., 2016. Effect of mineralizers for preparing ZrO2 support on the supported Ni catalyst for steam-CO2 bi-reforming of methane. International Journal of Hydrogen Energy.
Refbacks
- There are currently no refbacks.