Performance Improvement Polyvinylidene Fluoride (PVDF) Mordenite Membranes for Oil-in-Water Emulsion Separation

Brigitta Elga Kusuma Dewi, Pranoto Pranoto, Ozi Adi Saputra, Edi Pramono

Abstract

Improving the performance of membranes appropriate for oil-in-water separation is a global challenge. In this study, we prepared a PVDF/Mordenite (PZM) membrane and determined its properties to separate oil-in-water emulsions to address this challenge. The PVDF and PZM membranes were fabricated using the phase inversion technique and applied to separate two types of oil-in-water emulsions 1:99 (wt%), including vegetable oil and used cooking oil emulsion. PVDF polymer with DMAc solvent was added to mordenite with a concentration variation of mordenite. The addition of mordenite did not affect the increase of the β fraction on the hybrid membrane surface but could improve the membrane hydrophilicity. The addition of mordenite in the PVDF membrane has improved the characteristics of the membrane, including water flux, rejection membrane >90%, and FRR up to two times greater than a pristine PVDF membrane. Morphological analysis of the membrane confirmed an asymmetric membrane composed of finger-like and sponge-like. Combining mordenite and PVDF membrane to separate oil-in-water emulsions provides a new approach to oil wastewater treatment.

Keywords

membrane performance; mordenite; oil-in-water emulsion; PVDF

Full Text:

PDF

References

Almanassra, I. W., Jaber, L., Chatla, A., Abushawish, A., Shanableh, A., and Atieh, M. A., 2023. Unveiling the relationship between MOF porosity, particle size, and polyethersulfone membranes properties for efficient decontamination of dye and organic matter. Chemical Engineering Journal, 471, 144616. https://doi.org/10.1016/j.cej.2023.144616.

Bacariza, M. C., Graça, I., Lopes, J. M., and Henriques, C., 2018. Enhanced activity of CO2 hydrogenation to CH4 over Ni based zeolites through the optimization of the Si/Al ratio. Microporous and Mesoporous Materials, 267, 9–19. https://doi.org/10.1016/j.micromeso.2018.03.010.

Baig, U., Gondal, M. A., and Dastageer, M. A., 2022. Journal of Water Process Engineering Oil-water Separation Using Surface Engineered Superhydrophobic and Superoleophilic Membrane for the Production of Clean Water. Journal of Water Process Engineering, 45(102473), 1–11. https://doi.org/10.1016/j.jwpe.2021.102473.

Bhalani, D. V., Singh Chandel, A. K., Trivedi, J. S., Roy, S., and Jewrajka, S. K., 2018. High molecular weight poly(vinyl pyrrolidone) induces hierarchical surface morphology in poly(vinylidene fluoride) membrane and facilitates separation of oil-water emulsions. Journal of Membrane Science, 566, 415–427. https://doi.org/10.1016/j.memsci.2018.09.005 .

Cui, J., Zhou, Z., Xie, A., Meng, M., Cui, Y., Liu, S., Lu, J., Zhou, S., Yan, Y., and Dong, H., 2019. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Separation and Purification Technology, 209, 434–442. https://doi.org/10.1016/j.seppur.2018.03.054.

Cui, Z., Hassankiadeh, N. T., Zhuang, Y., Drioli, E., and Lee, Y. M., 2015. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Progress in Polymer Science, 51, 94–126. https://doi.org/10.1016/j.progpolymsci.2015.07.007.

Ding, Y., Wu, J., Wang, J., Lin, H., Wang, J., Liu, G., Pei, X., Liu, F., and Tang, C. Y., 2019. Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation. Applied Surface Science, 485, 179–187. https://doi.org/10.1016/j.apsusc.2019.04.214.

Gao, J., Cai, M., Nie, Z., Zhang, J., and Chen, Y., 2021. Superwetting PVDF membrane prepared by in situ extraction of metal ions for highly efficient oil/water mixture and emulsion separation. Separation and Purification Technology, 275, 1–12. https://doi.org/10.1016/j.seppur.2021.119174.

Guselnikova, O., Barras, A., Addad, A., Sviridova, E., Szunerits, S., Postnikov, P., and Boukherroub, R., 2020. Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions. Separation and Purification Technology, 240, 116627. https://doi.org/10.1016/j.seppur.2020.116627.

Hai, A., Durrani, A. A., Selvaraj, M., Banat, F., and Haija, M. A., 2019. Oil-water emulsion separation using intrinsically superoleophilic and superhydrophobic PVDF membrane. Separation and Purification Technology, 212, 388–395. https://doi.org/10.1016/j.seppur.2018.10.001.

He, Y., Xu, K., Feng, X., Chen, L., and Jiang, Z., 2021. A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. Journal of Membrane Science, 637, 119644. https://doi.org/10.1016/j.memsci.2021.119644.

Huang, F., Li, Y., Guo, H., Xu, J., Chen, Z., Zhang, J., and Wang, Y., 2016. Identification of waste cooking oil and vegetable oil via Raman spectroscopy. Journal of Raman Spectroscopy, 47(7), 860–864. https://doi.org/10.1002/jrs.4895.

Ismail, N. H., Salleh, W. N. W., Awang, N. A., Ahmad, S. Z. N., Rosman, N., Sazali, N., and Ismail, A. F., 2021. PVDF/HMO ultrafiltration membrane for efficient oil/water separation. Chemical Engineering Communications, 208(4), 463–473. https://doi.org/10.1080/00986445.2019.1650035.

Kahrs, C., and Schwellenbach, J., 2020. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. Polymer, 186, 1–20. https://doi.org/10.1016/j.polymer.2019.122071.

Kuang, J., Mi, Y., Zhang, Z., Ye, F., Yuan, H., Liu, W., and Jiang, X., 2020. A hyperbranched Poly (amido amine) demulsifier with trimethyl citrate as initial cores and its demulsification performance at ambient temperature. Journal of Water Process Engineering, 38, 101542. https://doi.org/10.1016/j.jwpe.2020.101542.

Lei, J., and Guo, Z., 2021. PES asymmetric membrane for oil-in-water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626, 127096. https://doi.org/10.1016/j.colsurfa.2021.127096.

Li, K., Wang, K., Zhang, Y., Liu, H., and Wang, J., 2020. A polyvinylidene fluoride ( PVDF ) – silica aerogel ( SiAG ) insulating membrane for improvement of thermal efficiency during membrane distillation. Journal of Membrane Science, 597, 117632. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117632.

Liu, Y., Bai, T., Zhao, S., Zhang, Z., Feng, M., Zhang, J., Li, D., and Feng, L., 2024. Sugarcane-based superhydrophilic and underwater superoleophobic membrane for efficient oil-in-water emulsions separation. Journal of Hazardous Materials, 461, 132551. https://doi.org/10.1016/j.jhazmat.2023.132551

Méricq, J. P., Mendret, J., Brosillon, S., and Faur, C., 2015. High performance PVDF-TiO2 membranes for water treatment. Chemical Engineering Science, 123, 283–291. https://doi.org/10.1016/j.ces.2014.10.047.

Nawi, N. I. M., Chean, H. M., Shamsuddin, N., Bilad, M. R., Narkkun, T., Faungnawakij, K., and Khan, A. L., 2020. Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment. Membranes, 10(6), 1–17. https://doi.org/10.3390/membranes10060121.

Ni, P., Zeng, J., Chen, H., Yang, F., and Yi, X., 2021. Effect of different factors on treatment of oily wastewater by TiO2/Al2O3-PVDF ultrafiltration membrane. Environmental Technology, 43(19), 2981–2989. https://doi.org/10.1080/09593330.2021.1912832.

Palˇ, A., Moldovan, S., Siblani, H. El, Vicente, A., and Valtchev, V., 2022. Defect Sites in Zeolites: Origin and Healing. Advance Science, 9(4), 2104414. https://doi.org/10.1002/advs.202104414.

Petranovskii, V., Pestryakov, A., Hernández, M. Á., Rivas, F. C., Claverie, A. L., and Fuentes, S., 2015. Hydrophilicity of Mordenites with Different SiO2/Al2O3 Molar Ratio. Procedia Chemistry, 15(646), 72–78. https://doi.org/10.1016/j.proche.2015.10.011.

Quinn, A., Sedev, R., and Ralston, J., 2005. Contact angle saturation in electrowetting. Journal of Physical Chemistry B, 109(13), 6268–6275. https://doi.org/10.1021/jp040478f.

Sadrara, M., Khorrami, M. K., Darian, J T., and Garmarudi, A. B., 2021. Rapid Determination and Classification of Zeolites Based on Si/Al Ratio Using FTIR Spectroscopy and Chemometrics. Infrared Physics and Technology, 116, 103797. https://doi.org/10.1016/j.infrared.2021.103797.

Salih, R. M., and Kadhim, H. J., 2023. Nanofiber composite for anti-bacterial application by electrospinning technique. Kuwait Journal of Science, 50(3), 262–270. https://doi.org/10.1016/j.kjs.2023.01.008.

Sun, H., Liu, Y., Li, D., Liu, B., and Yao, J., 2019. Hydrophobic SiO2 nanoparticle-induced polyvinylidene fluoride crystal phase inversion to enhance permeability of thin film composite membrane. Journal of Applied Polymer Science, 136(45), 1–12. https://doi.org/10.1002/app.48204.

Sun, Y., Lin, Y., Fang, L., Zhang, L., Cheng, L., Yoshioka, T., and Matsuyama, H., 2019. Facile development of poly (tetrafluorideethylene- r -vinylpyrrolidone) modi fi ed PVDF membrane with comprehensive antifouling property for highly-e ffi cient challenging oil-in-water emulsions separation. 584, 161–172. https://doi.org/10.1016/j.memsci.2019.04.071.

Tang, F., Wang, D., Zhou, C., Zeng, X., Du, J., Chen, L., Zhou, W., Lu, Z., Tan, L., and Dong, L., 2020. Natural polyphenol chemistry inspired organic-inorganic composite coating decorated PVDF membrane for oil-in-water emulsions separation. Materials Research Bulletin, 132, 110995. https://doi.org/10.1016/j.materresbull.2020.110995.

Umam, K., Sagita, F., Pramono, E., Ledyastuti, M., Kadja, G. T. M., and Radiman, C. L., 2023. Polyvinylidenefluoride (PVDF)/surface functionalized-mordenite mixed matrix membrane for congo red dyes removal: Effect of types of organosilane. JCIS Open, 11, 100093. https://doi.org/10.1016/j.jciso.2023.100093.

Vatanpour, V., Yekavalangi, M. E., and Safarpour, M., 2016. Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance. Separation and Purification Technology, 163, 300–309. https://doi.org/10.1016/j.seppur.2016.03.011.

Wang, Y., Li, Q., Miao, W., Lu, P., You, C., and Wang, Z., 2021. Hydrophilic PVDF membrane with versatile surface functions fabricated via cellulose molecular coating. Journal of Membrane Science, 640, 119817. https://doi.org/10.1016/j.memsci.2021.119817.

Wen, M., Chen, M., Chen, K., Li, P., Lv, C., Zhang, X., Yao, Y., Yang, W., Huang, G., Ren, G., Deng, S., Liu, Y., Zheng, Z., Xu, C., and Luo, D., 2021. Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. Journal of Membrane Science, 626, 119136. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119136.

Xie, A., Cui, J., Yang, J., Chen, Y., Lang, J., Li, C., Yan, Y., and Dai, J., 2020a. Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Separation and Purification Technology, 236, 116273. https://doi.org/10.1016/j.seppur.2019.116273.

Xie, A., Cui, J., Yang, J., Chen, Y., Lang, J., Li, C., Yan, Y., and Dai, J., 2020b. Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation. Journal of Membrane Science, 595, 117499. https://doi.org/10.1016/j.memsci.2019.117499.

Xiong, Z., He, Z., Mahmud, S., Zhou, L., Hu, C., and Zhao, S., 2020. Simple amphoteric charge strategy to reinforce superhydrophilic polyvinylidene fluoride membrane for highly efficient separation of various surfactant-stabilized oil-in-water emulsions. ACS Applied Materials 7 Interfaces, 12(41), 47018–47028. https://doi.org/10.1021/acsami.0c13508.

Yaacob, N., Goh, P. S., Ismail, A. F., Aina, N., Nazri, M., Ng, B. C., Nizam, M., Abidin, Z., and Yogarathinam, L. T., 2020. ZrO2-TiO2 Incorporated PVDF Dual-Layer Hollow Fiber Membrane for Oily Wastewater Treatment: Effect of Air Gap. Membranes, 20(124), 1–17. https://doi.org/10.3390/membranes10060124.

Yang, J., Wang, L., Xie, A., Dai, X., Yan, Y., and Dai, J., 2020. Facile surface coating of metal-tannin complex onto PVDF membrane with underwater Superoleophobicity for oil-water emulsion separation. Surface and Coatings Technology, 389, 125630. https://doi.org/10.1016/j.surfcoat.2020.125630.

Yang, X., He, Y., Zeng, G., Zhan, Y., Pan, Y., and Shi, H., 2016. Novel hydrophilic PVDF ultrafiltration membranes based on a ZrO2–multiwalled carbon nanotube hybrid for oil / water separation. Journal Material Science, 51, 8965–8976. https://doi.org/10.1007/s10853-016-0147-6.

Yi, X. S., Yu, S. L., Shi, W. X., Sun, N., Jin, L. M., Wang, S., Zhang, B., Ma, C., and Sun, L. P., 2011. The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3. Desalination, 281(1), 179–184. https://doi.org/10.1016/j.desal.2011.07.056.

Zhang, R., Sun, Y., Guo, Z., and Liu, W., 2021. Janus Membranes with Asymmetric Wettability Applied in Oil/Water Emulsion Separations. Advance Sustainable Systems, 5(5), 1–19. https://doi.org/10.1002/adsu.202000253.

Zhang, Y., Tong, X., Zhang, B., Zhang, C., Zhang, H., and Chen, Y., 2018. Enhanced permeation and antifouling performance of polyvinyl chloride (PVC) blend Pluronic F127 ultrafiltration membrane by using salt coagulation bath (SCB). Journal of Membrane Science, 548, 32–41. https://doi.org/10.1016/j.memsci.2017.11.003.

Zou, D., Jeon, S. M., Kim, H. W., Bae, J. Y., and Lee, Y. M., 2021. In-situ grown inorganic layer coated PVDF/PSF composite hollow fiber membranes with enhanced separation performance. Journal of Membrane Science, 637, 119632. https://doi.org/10.1016/j.memsci.2021.119632.

Refbacks

  • There are currently no refbacks.