Sintesis Hidroksiapatit secara Elektrolisis sebagai Bahan Baku Pembuatan Scaffold Tissue HA/PVA-AgCl untuk Aplikasi Penyembuhan Luka

Supriyono Supriyono, Bambang Poerwadi, Denny Widhiyanuriyawan, Nasirotul Wildah, Mahfita Ardyarum, Nabila Widadudari, Ilhan Junio Trizardi, Ulya Ahda Yustisia

Abstract

Hidroksiapatit (HA) sebagai bahan dasar dalam scaffold tissue memiliki kemampuan untuk berikatan langsung dengan jaringan tubuh secara in vivo. Scaffold tissue pada penelitian ini dalam bentuk membran komposit terdiri dari nHA/PVA-AgCl. AgCl berfungsi sebagai agen antibakteri, sedangkan PVA berfungsi sebagai polimer perekat. Ukuran nanometer untuk HA diperoleh melalui proses elektrolisis yang mengatur voltase untuk mengendalikan ukuran partikel. Variasi potensial listrik elektrolisis 4, 5, dan 6 V digunakan dalam proses selama enam jam. Sebagai pembanding, HA komersil juga digunakan dalam penelitian ini dan hasilnya menunjukkan bahwa voltase 5 V menghasilkan HA yang murni tanpa adanya brushite. Dalam hal diameter partikel, HA yang disintesis dengan potensial listrik 4, 5, dan 6 V, serta HA komersil masing-masing memiliki diameter 232 nm, 276 nm, 355 nm, dan 5421 nm. Metode BET untuk pengujian luas permukaan menghasilkan nilai berturut-turut untuk variabel potensial listrik elektrolisis HA 4, 5, dan 6 V, serta HA komersil masing-masing adalah 317,22; 344,247; 323,419; dan 205,779 m2/g. Hasil uji pre-klinis selama tujuh hari menunjukkan bahwa scaffold tissue yang menggunakan HA sintesis dengan voltase 5 V menghasilkan pertumbuhan fibroblas yang paling baik, dengan nilai rata-rata sekitar 47,3±4,53 fibroblas/nm2.


Synthesis of Hydroxyapatite by Electrolysis as Raw Material for Making HA/PVA-AgCl Tissue Scaffold for Wound Healing Application. Hydroxyapatite (HA), the primary material in scaffold tissue, can directly interact with the body's tissues in vivo. In this research, the scaffold tissue forms a composite membrane consisting of nHA/PVA-AgCl, with AgCl as an antibacterial agent and PVA as a binding polymer.Nanometer-sized HA particles are obtained through electro-synthesis, controlling voltage to regulate particle size. Three voltage variations, 4, 5, and 6 Vare used in the process for 6 hours. Commercial HA is also used for comparison, and the results indicate that 5 V voltage produces pure HA without brushite contamination. In terms of particle diameter, HA synthesized at 4, 5, 6 V, and commercial HA each have diameters of 232, 276, 355, and 5421 nm, respectively. The BET method is employed to test surface area, yielding consecutive values for the electro-synthesized HA voltage variations, with 4, 5, 6 V, and commercial HA having surface areas of 317.22; 344.247; 323.419; and 205.779 m2/g, respectively. The pre-clinical test in 7-days period findings reveal that scaffold tissue using HA synthesized at 5V voltage produces the best fibroblast growth, with an average value of approximately 47.3±4.53 fibroblasts/nm2.

Keywords

electrolysis; hydroxyapatite; nanoparticle; pre-clinic; scaffold tissue.

Full Text:

PDF

References

Ajaxon, I., Maazouz, Y., Ginebra, M. P., Öhman, C., and Persson, C., 2015. Evaluation of A Porosity Measurement Method for Wet Calcium Phosphate Cements. Journal of Biomaterials Applications, 30(5), 526–536. https://doi.org/10.1177/0885328215594293.

Bakhshayesh, R. D., A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., Alizadeh-Ghodsi, M., And Davaran, S., 2018. Recent Advances on Biomedical Applications of Scaffolds in Wound Healing and Dermal Tissue Engineering. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 691–705. https://doi.org/10.1080/21691401.2017.1349778.

Can-Herrera, L. A., Oliva, A. I., Dzul-Cervantes, M. A. A., Pacheco-Salazar, O. F., and Cervantes-Uc, J. M., 2021. Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers, 13(4), 662. https://doi.org/10.3390/polym13040662.

Chaudhari, A. A., Vig, K., Baganizi, D. R., Sahu, R., Dixit, S., Dennis, V., and Pillai, S. R., 2016. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. International Journal of Molecular Sciences, 17(12), 1974. https://doi.org/10.3390/ijms17121974.

Cox, S. C., Walton, R. I., and Mallick, K. K., 2015. Comparison of Techniques for The Synthesis of Hydroxyapatite. Bioinspired, Biomimetic and Nanobiomaterials, 4(1), 37–47. https://doi.org/10.1680/bbn.14.00010.

Khan, I., Saeed, K., and Khan, I., 2019. Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

Li, W., Lan, Y., Guo, R., Zhang, Y., Xue, W., and Zhang, Y., 2015. In Vitro and In Vivo Evaluation of A Novel Collagen/Cellulose Nanocrystals Scaffold for Achieving The Sustained Release of Basic Fibroblast Growth Factor. Journal of Biomaterials Applications, 29(6), 882–893. https://doi.org/10.1177/0885328214547091.

Martín, M., Eden, M. R., and Chemmangattuvalappil, N. G., 2016. Tools for Chemical Product Design: From Consumer Products to Biomedicine. Elsevier, Amsterdam.

Milla, E., L., Indrani, D. J., and Irawan, B., 2018. Sintesis dan Uji Porositas Scaffold Hidroksiapatit/Alginat. ODONTO Dental Journal, 5(1), 49–53. https://doi.org/10.30659/odj.5.1.49-53.

Montero, M. L., Sáenz, A., Rodríguez, J. G., Arenas, J., and Castaño, V. M., 2006. Electrochemical Synthesis of Nanosized Hydroxyapatite. Journal of Materials Science, 41(7), 2141–2144. https://doi.org/10.1007/s10853-006-5231-x.

Nur, A., Martasari, D. L., Nurwijayanti, D., Affandi, S., Widjaja, A., and Setyawan, H., 2018. Sintesis Hidroksiapatit Berukuran Nano dengan Metode Elektrokimia Dibantu EDTA. Jurnal Teknik Kimia Indonesia, 11(4), 199–207. https://doi.org/10.5614/jtki.2013.12.1.4.

Ribeiro, M., Ferraz, M. P., Monteiro, F. J., Fernandes, M. H., Beppu, M. M., Mantione, D., and Sardon, H., 2017. Antibacterial Silk Fibroin/Nanohydroxyapatite Hydrogels with Silver and Gold Nanoparticles for Bone Regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 13(1), 231–239. https://doi.org/10.1016/j.nano.2016.08.026.

Štulajterová, R. and Medvecký, Ľ., 2008. Effect of Calcium Ions on Transformation Brushite to Hydroxyapatite in Aqueous Solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1-3), 104–109. https://doi.org/10.1016/j.colsurfa.2007.08.036.

Wardani, S. C., Hapsari, D. N., and Fatima, F., 2020. Perbandingan Morfologi dan Rasio Ca/P Serbuk Hidroksiapatit dari Tulang Ikan Cakalang (Katsuwonus pelamis) dengan Hidroksiapatit Sisik Ikan. E-Prodenta Journal of Dentistry, 4(2), 314–320. http://dx.doi.org/10.21776/ub.eprodenta.2020.004.02.2.

Refbacks

  • There are currently no refbacks.