Elektroda Pasta Karbon Termodifikasi Bentonit Alam untuk Analisis Ion Pb(II) dalam Air Laut

Irdhawati Irdhawati, Ni Putu Gita Widi Saraswati, Emmy Sahara, Ayu Jyostisya Yotirani Arya Wijana

Abstract

Pada penelitian ini, elektroda pasta karbon termodifikasi bentonit alam digunakan untuk analisis ion Pb(II) dengan teknik voltametri pelucutan anodik. Tujuan penelitian ini untuk meningkatkan kepekaan pengukuran ion Pb(II). Parameter yang dioptimasi yaitu konsentrasi bentonit dalam pasta karbon, waktu deposisi, potensial deposisi, serta laju pindai. Rentang konsentrasi linier, limit deteksi, limit kuantisasi, keberulangan, dan persentase perolehan kembali telah divalidasi. Hasil yang diperoleh yaitu konsentrasi optimum bentonit dalam pasta karbon adalah 12%. Waktu deposisi optimum untuk elektroda pasta karbon (EPK) 120 detik, dan 90 detik menggunakan EPK termodifikasi bentonit alam (EPK-B), potensial deposisi optimum yaitu -0,43 V dengan EPK dan -0,23 V dengan EPK-B, serta laju pindai optimum yaitu 15 mV/s dengan EPK dan EPK-B. Hasil validasi pengukuran ion Pb(II) diperoleh konsentrasi linear pada rentang 10 – 1000 μg/L dengan EPK dan 5 – 500 μg/L dengan EPK-B. Limit deteksi dan limit kuantisasi masing-masing pengukuran yaitu 0,08 mg/L dan 0,25 mg/L menggunakan EPK, dan 0,19 mg/L dan 0,64 mg/L menggunakan EPK-B. Keberulangan pengukuran diperoleh nilai lebih kecil dari dua untuk kedua elektroda kerja. EPK-B pada kondisi optimum digunakan untuk menentukan konsentrasi ion Pb(II) dalam sampel air laut, diperoleh hasil 1,47 ± 0,31 mg/L.

Carbon Paste Electrode Modified with Natural Bentonite for Analysis of Pb(II) Ion in Seawater. This research used a modified bentonite carbon paste electrode for Pb(II) ion analysis using the anodic stripping voltammetry technique. This research aims to increase the sensitivity of Pb(II) ion measurement. Optimized parameters were the concentration of natural bentonite in carbon paste, deposition time, deposition potential, and scan rate. The range of linear concentration, detection limit, quantitation limit, repeatability, and recovery percentage were validated. The results were obtained the optimum concentration of natural bentonite in carbon paste at 12%. The optimum deposition time with carbon paste electrode (CPE) was 120 seconds and with natural bentonite-modified carbon paste electrode (CPE-B) was 90 seconds, the optimum deposition potential with CPE was -0.43 V, and with CPE-B was -0.23 V, the optimum scan rate for both working electrodes had the same value of 15 mV/s. Pb (II) ion measurements were obtained in the linear concentration range of 10 – 1000 μg/L using CPE and 5 – 500 μg/L using CPE-B. The detection and quantitation limits were found at 0.08 mg/L and 0.25 mg /L for CPE, and 0.19 mg /L and 0.64 mg /L using CPE-B, respectively. The repeated measurements for both CPE and CPE-B produced Horwitz ratio values were less than two. CPE-B at the optimum measurement conditions was used to measure the concentration of Pb (II) ion in seawater sample, found at 1.47 ± 0.31 mg/L.

Keywords

bentonite; Pb(II) ion; Serangan beach; anodic stripping voltammetry

Full Text:

PDF

References

Acar, E.T., Ortaboy, S., Hisarlı, G., and Atun, G., 2015. Sensitive Determination and Electro-Oxidative Polymerization of Azodyes on a Carbon Paste Electrode Modified with Bentonite. Applied Clay Science, 105–106, 131–141. https://doi.org/10.1016/j.clay.2014.12.035.

Adani, J.P., Wardhani, E., and Pharmawati, K., 2018. Identifikasi Pencemaran Logam Berat Timbal (Pb) dan Seng (Zn) di Air Permukaan dan Sedimen Waduk Saguling Provinsi Jawa Barat. Reka Lingkungan, 6, 1–12.

Alam, R., Ahmed, Z., and Howladar, M.F., 2020. Evaluation of Heavy Metal Contamination in Water, Soil and Plant around the Open Landfill Site Mogla Bazar in Sylhet, Bangladesh. Groundwater for Sustainable Development, 10, 100311. https://doi.org/10.1016/j.gsd.2019.100311.

AOAC, 1998. Association of Official Analytical Chemist (AOAC) Peer-Verified Methods Program Manual Policies and Procedures. Gaithersburg.

Arikibe, J.E., and Prasad, S., 2020. Determination and Comparison of Selected Heavy Metal Concentrations in Seawater and Sediment Samples in the Coastal Area of Suva, Fiji. Marine Pollution Bulletin, 157, 111157. https://doi.org/10.1016/j.marpolbul.2020.111157.

Brett, C.M.A., and Brett, A.M.O., 1993. Electrochemistry, Principles, Methods, and Applications. Oxford University Press, Oxford.

Harvey, D., 2000. Modern Analytical Chemistry, first ed. McGraw-Hill, Boston.

Ho, T.-Y., Chien, C.-T., Wang, B.-N., and Siriraks, A., 2010. Determination of Trace Metals in Seawater by an Automated Flow Injection Ion Chromatograph Pretreatment System with ICPMS. Talanta, 82, 1478–1484. https://doi.org/10.1016/j.talanta.2010.07.022.

Horwitz, W., and Albert, R., 2006. The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision. Journal of AOAC International, 89, 1095–1109. https://doi.org/10.1093/jaoac/89.4.1095.

Hu, H., Xie, B., Lu, Y., and Zhu, J., 2022. Advances in Electrochemical Detection Electrodes for As(III). Nanomaterials, 12, 781. https://doi.org/10.3390/nano12050781.

Irdhawati, I., Inur Ingtyas Mawarni, E., Jyostosya Yotirani Arya Wijana, A., Silvia Sitio, F., Gita Widi Saraswati, N.P., and Sahara, E., 2020. Activated Bentonite Modified-Carbon Paste Electrode for Determination The Level of Copper Ion (Cu2+) in Tomato. Aceh International Journal of Science and Technology, 9, 177–186. https://doi.org/10.13170/aijst.9.3.17856.

Irdhawati, I., Suyanto, H., and Andani, P.Y., 2017. Zeolite- Modified Carbon Paste Electrode for Determination of Copper Using Anodic Atripping Voltammetry Method. ALCHEMY Jurnal Penelitian Kimia, 13, 1–16. https://doi.org/10.20961/alchemy.v13i1.1808.

Jenni, A., Meeussen, J.C.L., Pakkanen, T.A., Hirvi, J.T., Akinwunmi, B., Yustres, Á., Navarro, V., López-Vizcaíno, R., Muuri, E., Niskanen, M., Wersin, P., and Mäder, U., 2021. Coupling of Chemical and Hydromechanical Properties in Bentonite: A New Reactive Transport Model. Applied Clay Science, 214, 106274. https://doi.org/10.1016/j.clay.2021.106274.

Jia, L.-H., Li, Y., and Li, Y.-Z., 2011. Determination of Wholesome Elements and Heavy Metals in Safflower (Carthamus tinctorius L.) from Xinjiang and Henan by ICP-MS/ICP-AES. Journal of Pharmaceutical Analysis, 1, 100–103. https://doi.org/10.1016/S2095-1779(11)70017-X.

Jiokeng, S.L.Z., Dongmo, L.M., Ymélé, E., Nde, D.B., and Tonlé, I.K., 2019. Organoclay-Film Modified Electrode for the Detection of Ultra-Traces of Hg2+ Ions: Approach of One Factor at a Time by an Experimental Design. Electrochimica Acta, 316, 152–161. https://doi.org/10.1016/j.electacta.2019.05.105.

Keputusan Menteri Negara Lingkungan Hidup No. 51 Tahun 2004 tentang Baku Mutu Air Laut, 2004. Direktorat Jenderal Pengendalian Pencemaran dan Kerusakan Lingkungan. Jakarta.

Lan, Y., Luo, H., Ren, X., Wang, Y., and Liu, Y., 2012. Anodic Stripping Voltammetric Determination of Arsenic(III) Using a Glassy Carbon Electrode Modified with Gold-Palladium Bimetallic Nanoparticles. Microchimica Acta, 178, 153–161. https://doi.org/10.1007/s00604-012-0827-0.

Miller, J.N., and Miller, J.C., 2010. Statistics and Chemometrics for Analytical Chemistry, sixth ed. Pearson Education Limited, Harlow.

Mohammed, H., Sadeek, S., Mahmoud, A.R., and Zaky, D., 2016. Comparison of AAS, EDXRF, ICP-MS and INAA Performance for Determination of Selected Heavy Metals in HFO Ashes. Microchemical Journal, 128, 1–6. https://doi.org/10.1016/j.microc.2016.04.002.

Ourari, A., Tennah, F., Ruíz-Rosas, R., Aggoun, D., and Morallón, E., 2018. Bentonite Modified Carbon Paste Electrode as a Selective Electrochemical Sensor for the Detection of Cadmium and Lead in Aqueous Solution. International Journal of Electrochemical Science, 13, 1683–1699. https://doi.org/10.20964/2018.02.35.

Pardi, H., and Fitriyah, D., 2023. Optimisation of The Cathodic Stripping Voltammetry For The Determination of Metal Ni(II) in The River Water. Al-Kimia, 11, 28–35. https://doi.org/10.24252/al-kimia.v11i1.35688.

Radotić, K., Djikanović, D., Simonović Radosavljević, J., Jović-Jovičić, N., and Mojović, Z., 2020. Comparative Study of Lignocellulosic Biomass and Its Components as Electrode Modifiers for Detection of Lead and Copper Ions. Journal of Electroanalytical Chemistry, 862, 114010. https://doi.org/10.1016/j.jelechem.2020.114010.

Ramadhan, S., and Dewi, G.C., 2022. Analysis of Co(II) Concentration Using Cyclic Voltammetry Technique. Chemistry and Materials, 1, 83–87. https://doi.org/10.56425/cma.v1i3.45.

Rojas-Romo, C., Aliaga, M.E., Arancibia, V., and Gomez, M., 2020. Determination of Pb(II) and Cd(II) via Anodic Stripping Voltammetry Using an in-Situ Bismuth Film Electrode. Microchemical Journal, 159, 105373. https://doi.org/10.1016/j.microc.2020.105373.

Sari, T.K., Jin, J., Zein, R., and Munaf, E., 2017. Anodic Stripping Voltammetry for the Determination of Trace Cr(VI) with Graphite/Styrene-Acrylonitrile Copolymer Composite Electrodes. Analytical Sciences, 33, 801–806. https://doi.org/10.2116/analsci.33.801.

Šekuljica, S., Guzsvány, V., Anojčić, J., Hegedűs, T., Mikov, M., and Kalcher, K., 2020. Imidazolium-Based Ionic Liquids as Modifiers of Carbon Paste Electrodes for Trace-Level Voltammetric Determination of Dopamine in Pharmaceutical Preparations. Journal of Molecular Liquids, 306, 1–8. https://doi.org/10.1016/j.molliq.2020.112900.

Shetti, N.P., Malode, S.J., Nayak, D.S., Naik, R.R., Kuchinad, G.T., Reddy, K.R., Shukla, S.S., and Aminabhavi, T.M., 2020. Hetero-Nanostructured Iron Oxide and Bentonite Clay Composite Assembly for the Determination of an Antiviral Drug Acyclovir. Microchemical Journal, 155, 1–8. https://doi.org/10.1016/j.microc.2020.104727.

Suliana, A., Pirim, D., Jurusan, S., Fmipa, K., Matematika, F., Ilmu, D., and Alam, P., 2014. Pembuatan Elektroda Pasta Karbon Termodifikasi Bentonit untuk Analisis Kadmium(II) dengan Ion Pengganggu Aluminium(III) dan Tembaga(II) secara Voltametri. UNESA Journal of Chemistry, 3, 26–36.

Wang, J., 2006. Analytical Electrochemistry, third ed. John Wiley & Sons, New Jersey.

Wijaya, A.R., Ohde, S., Shinjo, R., Ganmanee, M., and Cohen, M.D., 2019. Geochemical Fractions and Modeling Adsorption of Heavy Metals into Contaminated River Sediments in Japan and Thailand Determined by Sequential Leaching Technique Using ICP-MS. Arabian Journal of Chemistry, 12, 780–799. https://doi.org/10.1016/j.arabjc.2016.10.015.

Worsfold, P., Townshed, A., Poole, C.F., Miro, M., 2019. Enclyclopedia of Analytical Science, third ed. Elsevier, London.

Yang, F., Liu, P., Hao, T., Wu, Y., Ma, S., Hu, Y., Wang, S., and Guo, Z., 2019. Fast-Scan Anodic Stripping Voltammetry for Detection of Pb(II) at Picomolar Level. Russian Journal of Electrochemistry, 55, 222–228. https://doi.org/10.1134/S1023193519020162.

Zinoubi, K., Majdoub, H., Barhoumi, H., Boufi, S., and Jaffrezic-Renault, N., 2017. Determination of Trace Heavy Metal Ions by Anodic Stripping Voltammetry Using Nanofibrillated Cellulose Modified Electrode. Journal of Electroanalytical Chemistry, 799, 70–77. https://doi.org/10.1016/j.jelechem.2017.05.039.

Refbacks

  • There are currently no refbacks.