Sintesis dan Karakterisasi Film Pengemas Aktif dari Kombinasi Kitosan-Alginat dan Asam Sitrat

Sulistiyana Sulistiyana, Baiq Amelia Riyandari, Nini Nurkamariati

Abstract

Salah satu permasalahan yang terjadi di bidang pangan adalah penurunan kualitas pangan karena proses oksidasi lipid. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan variasi konsentrasi asam sitrat terhadap karakteristik film Kompleks Polilektrolit (KPE) Kitosan Alginat. Penelitian ini menggunakan metode eksperimen dengan pendekatan kuantitatif. Film KPE pada penelitian ini diperoleh dari penambahan asam sitrat dengan variasi konsentrasi 0 ppm(A0), 5 ppm(A1), 10 ppm(A2) dan 20 ppm(A3) ke dalam larutan kitosan-alginat. Parameter uji karakteristik film meliputi uji ketebalan, kadar air, kelarutan, densitas, transparansi film, FTIR dan aktivitas antioksidan. Hasil uji statistik menunjukkan penambahan asam sitrat dengan variasi konsentrasi berpengaruh signifikan terhadap karakteristik film kitosan alginat. Penambahan asam sitrat mampu meningkatkan ketebalan, densitas, dan transparansi film, namun menurunkan kadar air dan kelarutan film. Film kitosan alginat dengan penambahan asam sitrat memiliki nilai ketebalan dengan kisaran 0,0123-0,0187 mm dan telah memenuhi standar ketebalan edible film menurut Japanese Industrial Standard (JIS). Kadar air film berada pada rentang 11,74-15,85% dan telah memenuhi standar kadar air film sesuai SNI 06-3735-1995. Nilai kelarutan film berada pada rentang 8,33-12,215%, nilai transparansi film berada pada rentang 0,5127-4,9910, sedangkan nilai densitas film berada pada rentang 0,2105-2,0350 g.mL-1. Nilai aktivitas antioksidan tertinggi dimiliki oleh film dengan konsentrasi asam sitrat tertinggi (film A3).

Synthesis and Characterization of Active Packaging Film from a Combination of Chitosan Alginate and Citric Acid. One problem in the food sector is a decrease in food quality caused by the lipid oxidation process. This research aims to determine the effect of adding citric acid at different concentration levels to chitosan-alginate polyelectrolyte complex (PEC) films. This research used an experimental method with a quantitative approach. The concentrations of citric acid used in this research were 0 ppm(A0 film), 5 ppm(A1 film), 10 ppm(A2 film), and 20 ppm(A3 film). The physical properties tests of the films included thickness, water content, solubility, density, and transparency. The chemical properties test of the films included FTIR and antioxidant activity. Statistical test results showed that adding citric acid with varying concentrations significantly affected the characteristics of chitosan alginate films. Adding citric acid could increase film thickness, density, and transparency while decreasing film water content and solubility. The characteristics of chitosan alginate film with the addition of citric acid resulted in a film thickness of 0.0123 - 0.0187 mm. The range of the film density was 0.2105 - 2.0350 g.mL-1, while the range of water content was 11.74-15.85%. These values correspond to SNI 06-3735-1995. The value of film solubility was 8.33–12.215%. The transparency of films was 0.5127–4.9910. Antioxidant activity was tested using a DPPH solution, which showed that the highest concentration of citric acid in films had the greatest antioxidant activity.

Keywords

citric acid; active packaging film; PEC Chitosan-alginate; transparency

Full Text:

PDF

References

Aulia, M. P., Rizki, R., Aprilia, S., & Mulana, F., 2022. Effect of Addition Elephant Grass Cellulose and CaCO3 Oyster Shell Waste as Bioplastic Composites. Molekul, 17(2), 281–291. https://doi.org/10.20884/1.jm.2022.17.2.6410.

Carnaval, L. de S. C., Bezerra, A. C., Arroyo, B. D. C. J., Lins, L. O., Melo, E. de A., & Santos, A. M. P., 2022. Bioactive chitosan/extract peppermint films to food packing in brisee dough: mechanic properties, antioxidant activity and shelf life. Research, Society and Development, 11(1), 1–19. https://doi.org/10.33448/rsd-v11i1.25436.

Christwardana, M., Ismojo, & Marsudi, S., 2021. Physical, thermal stability, and mechanical characteristics of new bioplastic from blends cassava and tannia starches as green material. Molekul, 16(1), 46–56. https://doi.org/10.20884/1.jm.2021.16.1.671.

Contini, C., Álvarez, R., O’Sullivan, M., Dowling, D. P., Gargan, S. Ó., & Monahan, F. J., 2014. Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. Meat Science, 96(3), 1171–1176. https://doi.org/10.1016/j.meatsci.2013.11.007 .

Fajriati, I., Sedyadi, E., & Sudarlin, S., 2017. Synthesis Of Chitosan-Film Composite TiO2 Using Sorbitol As Plasticizer. ALCHEMY Jurnal Penelitian Kimia, 13(1), 75. https://doi.org/10.20961/alchemy.v13i1.4350.

Hermanto, D., Mudasir, M., Siswanta, D., Kuswandi, B., & Ismillayli, N., 2019. Polyelectrolyte complex (PEC) of the alginate-chitosan membrane for immobilizing urease. Journal of Mathematical and Fundamental Sciences, 51(3), 309–319. https://doi.org/10.5614/j.math.fund.sci.2019.51.3.8.

Jiang, H., Sun, J., Li, Y., Ma, J., Lu, Y., Pang, J., & Wu, C., 2020. Preparation and characterization of citric acid crosslinked konjac glucomannan/surface deacetylated chitin nanofibers bionanocomposite film. International Journal of Biological Macromolecules, 164, 2612–2621. https://doi.org/10.1016/j.ijbiomac.2020.08.138.

Kawija, Atmaka, W., & Lestariana, S., 2018. Studi Karakteristik Pati Singkong Utuh Berbasis Edible Film Dengan Modifikasi Cross-Linking Asam Sitrat. Jurnal Teknologi Pertanian, 18(2).

Kulig, D., Zimoch-Korzycka, A., Kró, Z., Oziembłowski, M., & Jarmoluk, A., 2017. Effect of film-forming alginate/chitosan polyelectrolyte complex on the storage quality of pork. Molecules, 22(1). https://doi.org/10.3390/molecules22010098.

Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L., 2007. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 8(8), 2533–2541. https://doi.org/10.1021/bm070014y.

Menzel, C. (2020). Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement. Carbohydrate Polymers, 250. https://doi.org/10.1016/j.carbpol.2020.116828.

Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., Järnström, L., & Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers, 96(1), 270–276. https://doi.org/10.1016/j.carbpol.2013.03.044.

Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019.

Potaś, J., Szymańska, E., & Winnicka, K. (2020). Challenges in developing of chitosan – Based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. In European Polymer Journal (Vol. 140). Elsevier Ltd. https://doi.org/10.1016/j.eurpolymj.2020.110020.

Priyadarshi, R., Sauraj, Kumar, B., & Negi, Y. S. (2018). Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers, 195, 329–338. https://doi.org/10.1016/j.carbpol.2018.04.089.

Razavi, S. M. A., Mohammad Amini, A., & Zahedi, Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43, 290–298. https://doi.org/10.1016/j.foodhyd.2014.05.028.

Riyandari, B. A., Suherman, & Siswanta, D. (2018). The physico-mechanical properties and release kinetics of eugenol in chitosan-alginate polyelectrolyte complex films as active food packaging. Indonesian Journal of Chemistry, 18(1), 82–91. https://doi.org/10.22146/ijc.26525.

Riyandari, B. A., Tri Rizki, Y., & Ramdani, M. (2022). Synthesis of Polyelectrolyte Complex Films of Chitosan-Alginate by Additon of Kelor Leaves Extract (Moringa oleifera) for Food Packaging. Jurnal Kimia Riset, 7(2), 133–140.

Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., Reungsang, A., & Rachtanapun, P. (2021). Antioxidant films from cassava starch/gelatin biocomposite fortified with quercetin and TBHQ and their applications in food models. Polymers, 13(7). https://doi.org/10.3390/polym13071117.

Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M. D. C., Nilsen-Nygaard, J., Pettersen, M. K., & Freire, C. S. R. (2018). A concise guide to active agents for active food packaging. In Trends in Food Science and Technology (Vol. 80, pp. 212–222). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.08.006.

Wibowo, A. H., Fehragucci, H., & Purnawan, C. (2023). Effect of Plasticizer Addition on The Characteristics of Chitosan-Alginate Edible Film. ALCHEMY Jurnal Penelitian Kimia, 19(2), 123–129. https://doi.org/10.20961/alchemy.19.2.71348.123-129.

Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., Xia, R., Zhang, Z., Shen, G., Liu, Y., Li, S., & Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97. https://doi.org/10.1016/j.foodhyd.2019.105208.

Wu, Z., Wu, J., Peng, T., Li, Y., Lin, D., Xing, B., Li, C., Yang, Y., Yang, L., Zhang, L., Ma, R., Wu, W., Lv, X., Dai, J., & Han, G. (2017). Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers, 9(3). https://doi.org/10.3390/polym9030102.

Refbacks

  • There are currently no refbacks.