Sintesis, Karakterisasi Struktur, dan Kajian In Silico Potensi 2'-Hidroksicalkon dan Flavonol Tersubstitusi Trimetoksi sebagai Inhibitor Main Protease (MPro) SARS-CoV-2
Abstract
Pada penelitian ini, 2'-hidroksicalkon (C345) dan flavonol (F345) tersubstitusi trimetoksi telah disintesis menggunakan metode iradiasi microwave dan metode pengadukan. Struktur kedua produk telah dikarakterisasi melalui analisis spektroskopi UV-Vis, FT-IR, 1H NMR, 13C NMR, dan HRMS. Hasil analisis spektroskopi menunjukkan bahwa kedua produk memiliki struktur yang sesuai dengan struktur molekul target yang diharapkan. Selain itu, hasil sintesis juga menunjukkan bahwa metode iradiasi microwave terbukti dapat mempercepat waktu reaksi (dari 1,5-3,0 jam menjadi 3-6 menit) dan meningkatkan rendemen produk murni pada sintesis senyawa C345 (55,31 %) dan F345 (83,65 %). Selanjutnya, hasil docking menunjukkan bahwa kedua senyawa dapat membentuk ikatan hidrogen dengan beberapa residu penting pada sisi aktif dan dapat terikat pada kedua situs katalik MPro SARS-CoV-2 (PDB ID:6M2N), yaitu His41 dan Cys145 melalui interaksi hidrofobik dengan nilai energi bebas pengikatan yang lebih negatif (-8,95 dan -9,02 kcal/mol) dibandingkan dengan baicalein sebagai inhibitor pembanding. Hasil kajian in silico lainnya juga menunjukkan bahwa kedua senyawa memiliki profil farmakokinetik yang baik dan memiliki sifat kemiripan dengan obat berdasarkan aturan Lipinski, Ghose, Veber, Egan, dan Muegge. Selain itu, senyawa F345 juga diprediksi memiliki risiko toksisitas yang lebih kecil dibandingkan dengan baicalein.
Synthesis, Structural Characterization, and In Silico Study of the Potential of 2'-Hydroxychalcone and Trimethoxy-Substituted Flavonols as Inhibitors of the Main Protease (MPro) of SARS-CoV-2. In this study, trimethoxy-substituted 2'-hydroxychalcone (C345) and flavonol (F345) were synthesized using microwave irradiation and stirring methods. The structure of the two products were characterized by spectroscopic analyses including UV-Vis, FT-IR, 1H NMR, 13C NMR, and HRMS. The result of spectroscopic analyses showed that the products had structures consistent with the expected target molecules. In addition, the synthesis results showed that the microwave irradiation method was proven to speed up the reaction time (from 1.5-3.0 hours to 3-6 minutes) and increased the yield of pure product in the synthesis of compounds C345 (55.31 %) and F345 (83.65 %). Furthermore, the docking result showed that the two compounds can form hydrogen bonds with several important residues on the active site and also can bind to catalytic dyad of the SARS-CoV-2 MPro (PDB ID:6M2N), namely His41 and Cys145 through hydrophobic interactions with a more negative binding free energy (-8.95 and -9.02 kcal/mol) than baicalein as a reference inhibitor. The result of silico studies also showed that the two compounds exhibited good pharmacokinetic profiles and drug-likeness properties based on Lipinski, Ghose, Veber, Egan, and Muegge rules. In addition, compound F345 was also predicted to has a smaller toxicity risk compared to baicalein.
Keywords
Full Text:
PDFReferences
Abdullah, S. S., Putra, P. P., Antasionasti, I., Rundengan, G., Suoth E. J., Abdullah, R. P. I., and Abdullah, F., 2021. Analisis Sifat Fisikokimia, Farmakokinetik, dan Toksikologi pada Pericarpium Pala (Myristica fragransa) secara Artificial Intelligence. Chemistry Progress, 14(2), 81–92. https://doi.org/10.35799/cp.14.2.2021.37112.
Banerjee, P., Eckert, A. O., Schrey, A. K., and Preissner, R., 2018. ProTox-II: a Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Research, 46(W1), W257‒W263. https://doi.org/10.1093/nar/gky318.
Bennett, M., Burke, A. J., and O’Sullivan, W. I., 1996. Aspect of the Algar-Flynn-Oyamada (AFO) Reaction. Tetrahedron, 52(20), 7163–7178. https://doi.org/10.1016/0040-4020(96)00334-1.
Birnie, E., Biemond, J. J., Appelman, B., de Bree, G. J., Jonges, M., Welkers, M. R. A., and Wiersinga, W. J., 2022. Development of Resistance-Associated Mutations After Sotrovimab Administration in High-Risk Individuals Infected With the SARS-CoV-2 Omicron Varian. JAMA, 328(11), 1104–1107. https://doi.org/10.1001/jama.2022.13854.
Bojarska, J., Remko, M., Breza, M., Madura, I. D., Kaczmarek, K., Zabrocki, J., and Wolf, W. M., 2020. A Supramolecular Approach to Structure-Based Design with A Focus on Synthons Hierarchy in Ornithine-Derived Ligands: Review, Synthesis, Experimental and in Silico Studies. Molecules, 25(5), 1135. https://doi.org/10.3390/molecules25051135.
Chaves, O. A., Fintelman-Rodrigues, N., Wang, X., Sacramento, C. Q., Temerozo, J. R., Ferreira, A. C., Mattos, M., Pereira-Dutra, F., Bozza, P. T., Castro-Faria-Neto, H. C., Russo, J. J., Ju, J., and Souza, T. M. L., 2022. Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones. ACS Omega, 7, 44542−44555. https://doi.org/10.3390/v14071458.
Chemical Books, 2023. (E)-2’-Hydroxychalcone (IR1). <https://www.chemicalbook.com/SpectrumEN_888-12-0_IR1.htm> (diakses pada 13 Agustus 2023).
Chen, Y., Yang, W., Chen, F., and Cui, L., 2022. COVID-19 and Cognitive Impairment: Neuroinvasive and Blood‒Brain Barrier Dysfunction. Journal of Neuroinflammation, 19, 222. https://doi.org/10.1186/s12974-022-02579-8.
Cucinotta, D., and Vanelli, M., 2020. WHO Declares COVID-19 a Pandemic. Acta Biomed, 91(1), 157–160. https://doi.org/10.23750/abm.v91i1.9397.
Daina, A., Michielin, O., and Zoete, V., 2017. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports 7, 42717. http://doi.org/10.1038/srep42717.
Dias, T. A., Duarte, C. L., Lima, C. F., Proença, M. F., and Pereira-Wilson, C., 2013. Superior Anticancer Activity of Halogenated Chalcones and Flavonols Over the Natural Flavonol Quercetin. European Journal of Medicinal Chemistry, 65, 500–510. https://doi.org/10.1016/j.ejmech.2013.04.064.
Egan, W. J., Merz, K. M., and Baldwin, J. J., 2000. Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/doi: 10.1021/jm000292e.
[FDA] Food and Drug Administration, 2023. Coronavirus (COVID-19) drugs. <https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs> (diakses pada 19 Juli 2023).
Fong, S. Y., Wong, Y. C., Zuo, Z., 2014. Development of a SPE-LC/MS/MS Method for Simultaneous Quantification of Baicalein, Wogonin, Oroxylin A and Their Glucuronides Baicalin, Wogonoside and Oroxyloside in Rats and its Application to Brain Uptake and Plasma Pharmacokinetic Studies. Journal of Pharmaceutical and Biomedical Analysis, 97, 9–23. https://doi.org/10.1016/j.jpba.2014.03.033.
Frimayanti, N., Ikhtiarudin, I., Dona, R., Putri, I., and Septama, A., 2023. Synthesis of 3’-Methoxy Flavonol and Its Derivatives as Potential Inhibitors for Dengue NS2B/NS3 and Molecular Insight into Binding Interaction. Pharmacy Edication, 23(2), 231–243. https://doi.org/10.46542/pe.2023.232.231243.
Gahlawat, A., Kumar, N., Kumar, R., Sandhu, H., Singh, I. P., Singh, S., Sjöstedt, A., and Garg, P., 2020. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 60(12), 5781–5793. https://doi.org/10.1021/acs.jcim.0c00546.
Ghose, A. K., Viswanadhan, V. N., and Wendoloski, J. J., 1999. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of Combinatorial Chemistry, 1, 55–68. https://doi.org/10.1021/cc9800071.
Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., and Afolabi, S. O., 2021. Potential Inhibitors of Coronavirus 3-Chymotrypsin-Like Protease (3CLpro): An In Silico Screening of Alkaloids and Terpenoids from African Medicinal Plants. Journal of Biomolecular Structure and Dynamics, 39(9), 3396–3408. https://doi.org/10.1080/07391102.2020.1764868.
Hernández-Parra, H., Reyes-Hernández, O. D., Figueroa-González, G., González-Del, C. M., González-Torres, M., Peña-Corona, S. I., Florán, B., Cortés, H., and Leyva-Gómez, G., 2023. Alteration of the Blood-Brain Barrier by COVID-19 and Its Implication in the Permeation of Drugs into the Brain. Frontiers in Cellular Neuroscience, 17, 1125109. https://doi.org/10.3389/fncel.2023.1125109.
Iketani, S., Mohri, H., Culbertson, B., Hong, S. J., Duan, Y., Luck, M. I., Annavajhala, M. K., Guo, Y., Sheng, Z., Uhlemann, A., Goff, S. P., Sabo, Y., Yang, H., Chavez, A., and Ho, D. D., 2023. Multiple Pathways for SARS-CoV-2 Resistance to Nirmatrelvir. Nature, 613, 558–564. https://doi.org/10.1038/s41586-022-05514-2.
Ikhtiarudin, I., Agistia, N., Frimayanti, N., Mora, E., Dona, R., Rahmawati., Rosnita, D., and Zamri, A., 2022a. Sintesis, Karakterisasi Struktur, dan Kajian Molekular Docking Senyawa 4’-Metoksi Flavonol Sebagai Inhibitor Main Protease (MPro) SARS-CoV-2. Majalah Farmasi dan Farmakologi, 26(1), 8–14. https://journal.unhas.ac.id/index.php/mff/article/view/18652.
Ikhtiarudin, I., Agistia, N., Harlianti, T., and Zamri, A., 2019. Sintesis dan Potensi Aktivitas Tabir Surya Senyawa Analog Kalkon Turunan 3’-Hidroksiasetofenon dan 4-Metoksibenzaldehid. Jurnal Photon, 10(1), 1–12. https://doi.org/10.37859/jp.v10i1.1541.
Ikhtiarudin, I., Dona, R., Frimayanti, N., Utami, R., Susanti, E., Mentari, M., Nurmaida, N., Agistia, N., Herfindo, N., and Zamri, A., 2021. (E)-4-(3-(3-(4-Methoxyphenyl)Acryloyl)Phenoxy)Butyl 2-Hydroxybenzoate. Molbank, 2021, M1195. https://doi.org/10.3390/M1195.
Ikhtiarudin, I., Dona, R., Frimayanti, N., Utami, R., Susianti, N., and Septama, A.W., 2022b. Sintesis, Karakterisasi Struktur, Dan Kajian Molecular Docking Senyawa Turunan 4’-Metoksi Flavonol Sebagai Antagonis Reseptor Estrogen Alpha (ER-α) Pada Kanker Payudara. Jurnal Riset Kimia, 13(2), 236–248. https://doi.org/10.25077/jrk.v13i2.553.
Ikhtiarudin, I., Frimayanti, N., Teruna., Hilwan, Y.., and Zamri, A., 2017. Microwave-Assisted Synthesis, Molecular Docking Study and In Vitro Evaluation of Halogen Substituted Flavonols Against P388 Murine Leukemia Cells. Applied Science and Technology, 1(1), 375–381. https://www.estech.org/index.php/IJSAT/article/view/61.
Ikhtiarudin, I., Lelani., Zamri, A., Teruna, H. Y., and Yuharmen., 2014. Sintesis dan Uji Toksisitas Senyawa Analog Kalkon Turunan 2’-Hidroksiaestofenon dan Halobenzaldehid. Jurnal Photon, 5(1), 57–63. https://doi.org/10.37859/jp.v5i1.194.
Jasril, J., Frimayanti, N., and Ikhtiarudin, I., 2020. In Silico Studies of Fluorinated Chalcone and Pyrazoline Analogues as Inhibitors for Cervical Cancer. In: Mart, T., et Al. (Eds.), Proceedings of the 5th International Symposium on Current Progress in Mathematics and Sciences. ISCPMS2019, 9-10 Juni 2019. AIP Conference Proceedings, 2242(1): 040008. https://doi.org/10.1063/5.0009375.
Jo, S., Kim, S., Shin, D. H., and Kim, M. S., 2020. Inhibition of SARS-CoV 3CL Protease by Flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 145–151. https://doi.org/10.1080/14756366.2019.1690480.
Lai, M. Y., Hsiu, S. L., Chen, C. C., Hou, Y. C., Chao, P. D., 2003. Urinary Pharmacokinetics of Baicalein, Wogonin and Their Glycosides After Oral Administration of Scutellariae Radix in Humans. Biological and Pharmaceutical Bulletin, 26(1), 79‒83. https://doi.org/10.1248/bpb.26.79.
Latif, M. S., Rusdiana, T., and Gozali, D., 2017. Artikel Tinjauan: Pengaruh P-Glycoprotein (P-Gp) Terhadap Bioavaibilitas Atorvastatin. Farmaka Suplemen, 15(3), 1–6. https://jurnal.unpad.ac.id/farmaka/article/view/15418.
Liang, W., Huang, X., and Chen, W., 2017. The Effects of Baicalin and Baicalein on Cerebral Ischemia: A Review. Aging Dis, 8(6), 850‒867. https://doi.org/10.14336/AD.2017.0829.
Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J., 2021. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0.
Mahgoub, R. E., Atatreh, N., and Ghattas, M. A., 2022. Chapter Three - Using filters in virtual screening: A comprehensive guide to minimize errors and maximize efficiency. Annual Reports in Medicinal Chemistry, Academic Press, 59, 99‒136. https://doi.org/10.1016/bs.armc.2022.09.002.
Markham, K. R., 1988. Cara mengindentifikasi flavonoid. Alih Bahasa Kosasih Padmawinata. Institut Teknologi Bandung, Bandung.
Mohamed, N. M., Ali, E. M. H., and Aboulmagd, A. M., 2021. Ligand-Based Design, Molecular Dynamics and ADMET Studies of Suggested SARS-CoV-2 MPro Inhibitors. RSC Advances, 11(8), 4523–4538. https://doi.org/10.1039/d0ra10141a.
Muegge, I., Heald, S. L., and Brittelli, D., 2001. Simple Selection Criteria for Drug-Like Chemical Matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e.
Nurlelasari, N., Widyana, A., Julaeha, E., Hardianto, A., Huspa, D. H. P., Maharani, R., Mayanti, T., Darwati, D., Hanafi, M., and Supratman, U., 2023. Studi In Silico Aktivitas Senyawa Steroid Terhadap Antikanker Payudara Menggunakan Estrogen Alfa (ER-α). ALCHEMY Jurnal Penelitian Kimia, 19(1), 44‒52. https://doi.org/10.20961/alchemy.19.1.62384.44-52.
Ogu, C. C., and Maxa, J. L., 2000. Drug Interactions Due to Cytochrome P450. Proceedings Baylor University Medical Center, 13(4), 421–423. https://doi.org/10.1080/08998280.2000.11927719.
Pardridge, W. M., 1995. Transport of Small Molecules Through the Blood-Brain Barrier: Biology and Methodology. Advanced Drug Delivery Reviews, 15, 5–36. https://doi.org/10.1016/0169-409X(95)00003-P.
Phang-Lyn, S., and Llerena, V. A., 2023. Biochemistry, Biotransformation. <https://www.ncbi.nlm.nih.gov/books/NBK544353/> (diakses pada 4 Desember 2023).
Razzaghi-Asl, N., Ebadi, A., Shahabipour, S., and Gholamin, D., 2021. Identification of a Potential SARS-CoV2 Inhibitor via Molecular Dynamics Simulations and Amino Acid Decomposition Analysis. Journal of Biomolecular Structure and Dynamics, 39(17), 6633–6648. https://doi.org/10.1080/07391102.2020.1797536.
Santoso, B., 2017. Pengaruh Volume Gridbox Pada Docking Senyawa dalam Stelechocarpus burahol Terhadap Protein Homolog Antiinflamasi TRPV1. In: Rahayu, H.S.E et al., (Eds), Proceeding 6th University Research Colloquium 2017: Seri MIPA dan Kesehatan. URECOL5, 9 September 2017. Universitas Muhammadiyah Magelang, Magelang, Indonesia, 321–328. https://journal.unimma.ac.id/index.php/urecol/article/view/1369.
Sekiou, O., Bouziane, I.., Frissou, N., Bouslama, Z., Honcharova, O., Djemel, A., and Benselhoub, A., 2020. In-Silico Identification of Potent Inhibitors of COVID-19 Main Protease (MPro) from Natural Products. International Journal of Biochemistry & Physiology, 5(3), 000189. https://doi.org/10.23880/ijbp-16000189.
Silva, A. M. S., Tavares, H. R., Barros, A. I. N. R. A., and Cavaleiro, J. A. S., 1997. NMR and Structural and Conformational Features of 2’-Hydroxychalcone and Flavones. Spectroscopy Letters, 30(8), 1655–1667. https://doi.org/10.1080/00387019708006750.
Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., Xie, H., Ke, C., Hu, H., Gao, M., Yu, K., Liu, H., Shen, J., Tang, W., Zhang, L., Xiao, G., Ni, L., Wang, D., Zuo, J., Jiang, H., Bai, F., Wu, Y., Ye, Y., and Xu, Y., 2020. Anti-SARS-CoV-2 Activities in Vitro of Shuanghuanglian Preparations and Bioactive Ingredients. Acta Pharmacologica Sinica, 41(9), 1167–1177. https://doi.org/10.1038%2Fs41401-020-0483-6.
Supratman, U., 2010. Elusidasi Struktur Senyawa Organik: Metode Spektroskopi untuk Penentuan Struktur Senyawa Organik. Widya Padjadjaran, Bandung.
Taiming, L., and Xuehua, J., 2006. Investigation of the Absorption Mechanisms of Baicalin and Baicalein in Rats. Journal of Pharmaceutical Sciences, 95(6), 1326‒1333. https://doi.org/10.1002/jps.20593.
[UN] United Nation. 2023, WHO chief declares end to COVID-19 as a global health emergency. <https://news.un.org/en/story/2023/05/1136367> (diakses pada 19 Juli 2023).
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., and Kopple, K. D., 2002. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n.
Venugopal, P. P., and Chakraborty, D., 2021. Molecular Mechanism of Inhibition of COVID-19 Main Protease by β-Adrenoceptor Agonists and Adenosine Deaminase Inhibitors Using In Silico Methods. Journal of Biomolecular Structure and Dynamics, 40(1), 1–16. https://doi.org/10.1080%2F07391102.2020.1868337.
[WHO] World Health Organization, 2020. Coronavirus disease (COVID-19) pandemic. <https://www.who.int/europe/emergencies/situations/covid-19> (diakses pada 19 Juli 2023).
Yu, Y., Pauli, G. F., Huang, L., Gan, L. S., van Breemen, R. B., Li, D., McAlpine, J. B., Lankin, D. C., and Chen, S. N., 2020. Classification of Flavonoid Metabolomes via Data Mining and Quantification of Hydroxyl NMR Signals. Analytical Chemistry, 92(7), 4954–4962. https://doi.org/10.1021/acs.analchem.9b05084.
Zamri, A., Teruna, H. Y., and Ikhtiarudin, I., 2016. The Influences of Power Variations on Selectivity of Synthesis Reaction of 2’-Hydroxychalcone Analogue under Microwave Irradiation. Molekul, 11(2), 299–307. http://dx.doi.org/10.20884/1.jm.2016.11.2.220.
Zhang, H., Hassan, Y. I., Liu, R., Mats, L., Yang, C., Liu, C., and Tsao, R., 2020. Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model. ACS Omega, 5(19), 10782–10793. https://doi.org/10.1021/acsomega.0c00379.
Zhang, L., Zhou, L., Bao, L., Liu, J., Zhu, H., Lv, Q., Liu, R., Chen, W., Tong, W., Wei, Q., Xu, Y., Deng, W., Gao, H., Xue, J., Song, Z., Yu, P., Han, Y., Zhang, Y., Sun, X., Yu, X., and Qin, C., 2021. SARS-CoV-2 Crosses the Blood-Brain Barrier Accompanied with Basement Membrane Disruption without TIGHT JUNCTIONS Alteration. Signal Transduction and Targeted Therapy, 6(1), 337. https://doi.org/10.1038/s41392-021-00719-9.
Refbacks
- There are currently no refbacks.