Sintesis Kopoli(Anetol-Stearil Akrilat-Divinilbenzena) sebagai Material Alternatif Adsorben

Desi Suci Handayani, Edi Pramono, Bagus Indra Suwaji

Abstract

Sintesis kopoli(Anetol-Stearil Akrilat-Divinilbenzena) atau KASA-DVB berhasil dilakukan melalui reaksi kopolimerisasi kationik menggunakan inisiator BF3O(C2H5)2 dan Stearil Akrilat (SA) dengan variasi 2, 4, dan 6 (b/b), pada jumlah anetol dan DVB tetap. Produk yang dihasilkan dikarakterisasi gugus fungsi, struktur, morfologi, viskositas intrinsik dan sifat termalnya berturut-turut menggunakan spektroskopi Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), scanning electron microscopy dengan energy dispersive X-ray (SEM-EDX), viskometer Ostwald dan analisis thermogravimetric-differential thermal-differential scanning calorimetry (TG/DTA-DSC). Uji kinerja adsorpsi senyawa dilakukan dengan metode batch dan konsentrasi adsorbat ditentukan dengan Spektrofotometer UV-Vis. Data FT-IR menunjukkan hilangnya serapan gugus alil dan vinil sementara data 1H-NMR menunjukkan hilangnya H-alil dan H-vinil yang mengindikasikan KASA-DVB berhasil disintesis. Penambahan konsentrasi SA dapat meningkatkan nilai viskositas intrinsik. Analisis morfologi KASA-DVB diperoleh padatan dengan permukaan yang relatif kasar dan jumlah rongga semakin sedikit. Analisis termogram TG/DTA-DSC menunjukkan penurunan sifat termal yaitu diperoleh titik inisiasi degradasi massa yang lebih rendah. Nilai kapasitas adsorpsi tertinggi diperoleh dari hasil uji kinerja adsorpsi pada waktu kontak ke-60 menit dan variasi berat SA 2%. Berdasarkan data kinerja adsorpsi, menunjukkan bahwa KASA-DVB memiliki potensi sebagai adsorben. Uji adsorpsi menunjukkan kapasitas adsorpsi terbesar adalah 23,22 (mg/g) pada KASA-DVB 2%.

 

Synthesis of Copoly(Anethol-Styryl Acrylate-Divinylbenzene) as an Alternative Adsorbent Material. Synthesis of copoly(Anethole-Stearyl Acrylate-Divinylbenzene) or KASA-DVB was successfully carried out by a cationic copolymerization reaction using BF3O(C2H5)2 initiator and various concentrations of Stearyl Acrylate (SA) are 2, 4, and 6 wt. The resulting products were characterized by functional groups, structure, morphology, intrinsic viscosity, and thermal properties using Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), Ostwald Viscometer, and thermogravimetric-differential thermal-differential scanning calorimetry analysis (TG/DTA-DSC), respectively. The adsorption performance was analyzed using the batch method, and the adsorbate concentration was determined using a UV-Vis spectrophotometer. The FT-IR data showed loss of allyl and vinyl groups absorption, while 1H-NMR data showed loss of H-allyl and H-vinyl, indicating that KASA-DVB was successfully synthesized. The increase in SA concentration can increase the intrinsic viscosity value. Morphological analysis of KASA-DVB obtained solid materials with a relatively rough surface and fewer cavities. Thermogram analysis of TG/DTA-DSC showed a decrease in thermal properties, which was a lower mass degradation initiation point. The highest adsorption capacity was obtained from the adsorption performance with a contact time of 60 minutes and 2% SA weight variation. The adsorption performance data shows that KASA-DVB is potent as an adsorbent. The adsorption showed that the largest adsorption capacity was 23.22 (mg/g) on KASA-DVB 2%.

Keywords

adsorption; anethole; divinylbenzene; cationic copolymerization; stearyl acrylate.

Full Text:

PDF

References

Appiah-Ntiamoaha, R., Kima, H., Gadisaa, B. T., Bayea, A. F., Abebea, M. W., and Kostjuk, S. K. 2018. Degradation kinetics of polyanethole: A newly synthesized green polymer. Materials Chemistry and Physics, 219: 468–477. https://doi.org/10.1016/j.matchemphys.2018.08.061

Chaudhari, A. K., Singh, V. K., Das, S., Deepika, Singh, B. K. and Dubey, N. K., 2020. Antimicrobial, Aflatoxin B1 Inhibitory and Lipid Oxidation Suppressing Potential of Anethole-Based Chitosan Nanoemulsion as Novel Preservative for Protection of Stored Maize. Food and Bioprocess Technology, 13(8), 1462–1477. https://doi.org/10.1007/s11947-020-02479-w.

Handayani, D. S., Kusumaningsih, T. and Muslimin, 1997. Sintesis Kopoli(Anetol-DVB) Sulfonat Sebagai Bahan Alternatif Resin Penukar Kation. Jurnal Tekhnik Industri Pertanian, 17(2), 43-48. https://journal.ipb.ac.id/index.php/jurnaltin/article/view/4217.

Handayani, D. S., Kusumaningsih, T. and Yuli, M., 2004. Synthesis of Co-Poly(Eugenol Sulfonate)-DVB from Eugenol as a Major Component of Syzygium Aromaticum Oils. Biofarmasi Journal of Natural Product Biochemistry, 2(2), 53–57. https://doi.org/10.13057/biofar/f020202.

He, F., Gao, Y., Jin, K., Wang, J., Sun, J. and Fang, Q., 2016. Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustainable Chemistry and Engineering, 4(8), 4451–4456. https://doi.org/10.1021/acssuschemeng.6b01065.

Hirashima, S., Kudo, Y., Nobuta, T., Tada, N. and Itoh, A., 2009. Aerobic Photo-Oxidative Cleavage of the C-C Double Bonds of Styrenes. Tetrahedron Letters, 50(30), 4328–4330. https://doi.org/10.1016/j.tetlet.2009.05.012.

Hirose, M., Zhou, J. and Nagai, K., 2000. The Structure and Properties of Acrylic-Polyurethane Hybrid Emulsions. Progress in Organic Coatings, 38(1), 27–34. https://doi.org/10.1016/S0300-9440(99)00081-8.

Huang, S., Dong, R., Xu, G., Liu, J., Gao, X., Yu, S., Qie, P., Gou, G., Hu, M. and Wang, Y., 2020. Synthesis, Characterization, and in Vivo Evaluation of Desmethyl Anethole Trithione Phosphate Prodrug for Ameliorating Cerebral Ischemia-Reperfusion Injury in Rats. ACS Omega, 5(9), 4595–4602. https://doi.org/10.1021/acsomega.9b04129.

Lai, S. and Lee, D. G., 2001. Heterogeneous Permanganate Oxidation of Styrene and Cinnamic Acid Derivatives: A Simple and Effective Method for the Preparation of Benzaldehydes. Synthesis, 11, 1645–1648. http://dx.doi.org/10.1055/s-2001-16760.

Lèvêque, J. L. and Saint-Lèger, D., 2002. Salicylic Acid and Derivatives. Skin Moisturization. Marcel Dekker Inc., New York.

Liang, F., 2012. Synthesis and Properties of Acrylate Modified Waterborne Polyurethane Emulsion, Advanced Materials Research, 537, 1386–1392. http://dx.doi.org/10.4028/www.scientific.net/AMR.535-537.1386.

Ma, L., Song, L., Li, F., Wang, H. and Liu, B., 2017. Preparation and Properties of Poly (Propylene Carbonate)-Based Waterborne Polyurethane-Acrylate Composite Emulsion. Colloid Polym Science, 295(12), 1-10. https://link.springer.com/article/10.1007/s00396-017-4198-2.

Mandal, A. and Das, S. K., 2019. Phenol Adsorption from Wastewater Using Clarified Sludge from Basic Oxygen Furnace. Journal of Environmental Chemical Engineering, 7(4), 103259. https://doi.org/10.1016/j.jece.2019.103259.

parMcIntyre, D., 2015. Characterisation. The Cambridge Handbook of Stylistics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139237031.013.

McLachlan, G., Baker, A., Tennant, P., Gordon, C., Vrettou, C., Renwick, L., Blundell, R., Cheng, S. H., Scheule, R. K., Davies, L., Painter, H., Coles, R. L., Lawton, A. E., Marriott, C., Gill, D. R., Hyde, S. C., Griesenbach, U., Alton, E. W. F. W., Boyd, A. C., Porteous, D. J. and Collie, D. D. S., 2007. Optimizing Aerosol Gene Delivery and Expression in the Ovine Lung. Molecular Therapy, 15(2), 348–354. https://doi.org/10.1038/sj.mt.6300058.

Mori, H. and Müller, A. H. E., 2003. New Polymeric Architectures with (Meth)Acrylic Acid Segments. Progress in Polymer Science (Oxford), 28(10), 1403–1439. http://dx.doi.org/10.1016/S0079-6700(03)00076-5.

Nirmala, G., Murugesan, T., Rambabu, K., Sathiyanarayanan, K. and Show, P. L., 2019. Adsorptive Removal of Phenol Using Banyan Root Activated Carbon. Chemical Engineering Communications, 208(6), 831–842. https://doi.org/10.1080/00986445.2019.1674839.

Pappoppula, K. T., 2020. Asia to lead global acrylic acid capacity additions by 2024, says GlobalData. <https://www.globaldata.com/asia-lead-global-acrylic-acid-capacity-additions-2024-says-globaldata/> (diakses pada ).

Peruzzo, P. J., Anbinder, P. S., Pardini, O. R., Vega, J., Costa, C. A., Galembeck, F. and Amalvy, J. I., 2011. Waterborne Polyurethane/Acrylate: Comparison of Hybrid and Blend Systems. Progress in Organic Coatings, 72(3), 429–437. http://dx.doi.org/10.1016/j.porgcoat.2011.05.016.

Prax, M., Shahmirzadi, S. V. and Götz, F., 2015. Sodium Polyanethol Sulfonate (SPS) Falsifies Protein Staining and Quanti Fi Cation and How to Solve This Problem. Journal of Microbiological Methods, 118, 176–181. https://doi.org/10.1016/j.mimet.2015.10.002.

Putnam, D., 2006. Polymers for Gene Delivery across Length Scales. Nature Materials, 5(6), 439–451. https://doi.org/10.1038/nmat1645.

Raza, S., Yong, X., Raza, M. and Deng, J., 2018. Synthesis of Biomass Trans-Anethole Based Magnetic Hollow Polymer Particles and Their Applications as Renewable Adsorbent. Chemical Engineering Journal, 352, 20–28. https://doi.org/10.1016/j.cej.2018.06.185.

Rostiana, O., 2016. Perbanyakan Tanaman Anis (Pimpinella Anisum L.) Secara In Vitro. Buletin Penelitian Tanaman Rempah Dan Obat, 18(2), 117–26.

Samal, S. K., Dash, M., Vlierberghe, S. V., Kaplan, D. L., Chiellini, E., Blitterswijk, C., Moroni, L. and Dubruel, P., 2012. Cationic Polymers and Their Therapeutic Potential. Chemical Society Reviews, 41(21), 7147–7194. https://doi.org/10.1039/C2CS35094G.

Sheng, L., Zhang, X., Ge, Z., Liang, Z., Liu, X., Chai, C. and Luo, Y., 2018. Preparation and Properties of Waterborne Polyurethane Modified by Stearyl Acrylate for Water Repellents. Journal of Coatings Technology and Research, 15(6), 1283–1292. http://dx.doi.org/10.1007/s11998-018-0096-x.

Slamet, R., Arbianti, R. and Daryanto, 2005. Pengolahan Limbah Organik (Fenol) Dan Logam Berat (Cr6+ Atau Pt4+) Secara Simultan Dengan Fotokatalis TiO2, ZnO-TiO2, Dan CdS-TiO2. MAKARA of Technology Series, 9(2), 66–71. https://dx.doi.org/10.7454/mst.v9i2.363.

Thuy, L., Nguyen T., Takemura, A. J., Ohniwa, R. L., Saito, S. and Morikawa, K., 2018. Sodium Polyanethol Sulfonate Modulates Natural Transformation of SigH-Expressing Staphylococcus Aureus. Current Microbiology, 75(4), 499–504. https://link.springer.com/article/10.1007/s00284-017-1409-5.

Wang, C., Sun, J., Tao, Y., Fang, L., Zhou, J., Dai, M., Liu, M. and Fang, Q., 2020. Biomass Materials Derived from Anethole: Conversion and Application. Polymer Chemistry, 11(5), 954–963. http://dx.doi.org/10.1039/C9PY01513B.

Wang, X., Wang, H. and Sun, Y., 2017. Synthesis of Acrylic Acid Derivatives from CO2 and Ethylene. Chem, 3(2), 211–228. https://doi.org/10.1016/j.chempr.2017.07.006.

Xu, Y., Wang, C., Hou, J., Wang, P., You, G., Miao, L., Lv, B., Yang, Y. and Zhang, F., 2017. Application of Zero Valent Iron Coupling with Biological Process for Wastewater Treatment: A Review. Reviews in Environmental Science and Biotechnology, 16(4), 667–693. http://dx.doi.org/10.1007%2Fs11157-017-9445-y.

Zhang, C., Zhang, X., Dai, J. and Bai, C., 2008. Synthesis and Properties of PDMS Modified Waterborne Polyurethane – Acrylic Hybrid Emulsion by Solvent-Free Method. Progress in Organic Coatings, 63(2), 238–244. https://doi.org/10.1016/j.porgcoat.2008.05.011.

Zhang, K., Han, M., Liu, Y. and Froimowicz, P., 2019. Design and Synthesis of Bio-Based High-Performance Trioxazine Benzoxazine Resin via Natural Renewable Resources. Research-article. ACS Sustainable Chemistry and Engineering, 7(10), 9399–9407. https://doi.org/10.1021/acssuschemeng.9b00603.

Refbacks

  • There are currently no refbacks.