Studi Optimisasi dan Kinetika Adsorpsi Silika dari Lumpur Lapindo dengan Metode Sol-Gel Menggunakan P123-Putih Telur

Maria Ulfa, Anisa Ayu Solikah, Zahra Ayu Fadhilah, Ida Setiarini, Zulfana Qoulan Syadida

Abstract

Dalam penelitian ini, silika yang disintesis dari Lapindo lumpur dengan metode sol-gel menggunakan P123-putih telur dan berhasil diterapkan sebagai adsorben ibuprofen. Konsentrasi awal, berat adsorben, pH dan suhu diterapkan untuk mengoptimalkan kondisi reaksi eksperimental utama menggunakan metode batch. Optimalisasi ini didasarkan pada maksimalisasi pengurangan ibuprofen menggunakan silika dari Lumpur Lapindo. Penelitian ini menunjukan bahwa dua parameter yang paling relevan untuk adsorpsi ibuprofen adalah suhu adsorpsi dan dosis adsorben. Berdasarkan model adsorpsi, kondisi optimal untuk adsorpsi ibuprofen maksimum ditentukan selama 60 menit sebagai 100 mg/L, 45±0,5 ℃, pH 5 dan dosis katalis 0,03 g, menghasilkan persentase pengurangan adsorpsi masing-masing 94,88; 96,04; 95,57; dan 96,65%. Kinetika adsorpsi ibuprofen juga dievaluasi dan hasil eksperimen dijelaskan dengan baik menggunakan pseudo pertama dan model orde kedua semu. Studi kinetik yang menggunakan analisis regresi linier mengungkapkan adsorpsi cocok dengan pseudo kinetik orde kedua dengan nilai energi aktivasi adalah 0,441 kJ/mol dan faktor pra-eksponensial adalah 1,21 L2‧mol-2‧min-1 yang mengonfirmasi bahwa silika dari Lumpur Lapindo bisa menjadi alternatif yang baik untuk menghilangkan ibuprofen melalui adsorpsi.

Optimization and Ibuprofen Kinetical Adsorption Study of Silica from Lapindo Mud (SLM) by Sol-gel Method. This study successfully applied silica synthesized from Lapindo mud by sol-gel method using P123-white egg as an adsorbent for reducing ibuprofen. An initial concentration, adsorbent weight, pH, and temperature were applied to optimize the main experimental reaction conditions using batch methods. This optimization was based on maximizing ibuprofen removal of the silica from lapindo mud samples. The results show that the two most relevant parameters for ibuprofen adsorption are the adsorption temperature and adsorbent dosage. According to the Kinetics model, the optimum condition for the maximum ibuprofen adsorption was determined during 60 min at ibuprofen concentration of 100 mg/L at 45±0.5 °C (pH 5) with catalyst dosage of 0.03 g, resulting in 94.88, 96.04, 95.57, and 96.65% ibuprofen removal, respectively. The kinetics of the ibuprofen adsorption was also evaluated, and the experimental results were well described using a pseudo-first and pseudo-second-order model. The kinetic studies using linear regression analysis revealed that the adsorption fits pseudo-second-order kinetic with the value of the activation energy of 0.441 kJ/mol and the pre-exponential factor of 1.21 L2‧mol-2‧min-1, confirming that the silica from Lapindo mud is a good alternative for removal ibuprofen through adsorption.

Keywords

adsorption; ibuprofen; green chemistry; lapindo mud (LM); sol-sel method; nanosilica.

Full Text:

PDF

References

Anggriani, M. U., Hasan, A., and Purnamasari, I., 2021. Kinetika Adsorpsi Karbon Aktif Dalam Penurunan Konsentrasi Logam Tembaga (Cu) Dan Timbal (Pb). Universitas Sriwijaya, 12(02), 29–37.

Dziadkowiec, J., Mansa, R., Quintela, A., Rocha, F., and Detellier, C., 2017. Preparation, characterization and application in controlled release of Ibuprofen-loaded Guar Gum/Montmorillonite Bionanocomposites. Applied Clay Science, 135, 52–63. https://doi.org/10.1016/j.clay.2016.09.003.

Fanani, N., and Ulfindrayani, I. F., 2019. Synthesis Of Activated Carbon (AC) From Bamboo Waste As A Support Of Zinc Oxide (ZnO) Catalyst. Konversi, 8(2), 108–112. https://doi.org/10.20527/k.v8i2.7183.

Imoisili, P. E., Ukoba, K. O., and Jen, T. C., 2020. Green Technology Extraction and Characterisation of Silica Nanoparticles from Palm Kernel Shell Ash Via Sol-Gel. Journal of Materials Research and Technology, 9(1), 307–313. https://doi.org/10.1016/j.jmrt.2019.10.059.

Iovino, P., Canzano, S., Capasso, S., Erto, A., and Musmarra, D. 2015. A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons. Chemical Engineering Journal, 277, 360–367. https://doi.org/10.1016/j.cej.2015.04.097.

Irannajad, M., Kamran Haghighi, H., and Soleimanipour, M. 2016. Adsorption of Zn2+, Cd2+ and Cu2+ on zeolites coated by manganese and iron oxides. Physicochemical Problems of Mineral Processing, 52(2), 893–908. https://doi.org/10.5277/ppmp160229.

Jalil, A. A., Triwahyono, S., Adam, H. ., Rahim, D. ., Aziz, M. A. A., Hairom, N. H. ., Razali, N. A. ., Abidin, M. A. ., and Mohamadiah, M. K. . 2010. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. Journal of Hazardous Materials, 181, 755–762.

Meila Anggriani, U., Hasan, A., and Purnamasari, I. 2021. Kinetika Adsorpsi Karbon Aktif Dalam Penurunan Konsentrasi Logam Tembaga (Cu) Dan Timbal (Pb). Universitas Sriwijaya, 12(02), 29–37.

Nizar, M., and Supardi, I. 2016. Sintesis SiO2 Berbahan Dasar Abu Vulkanik Sebagai Adsorben Ion Pb [II]. Jurnal Inovasi Fisika Indonesia (IFI), 05(1), 28–32.

Puspitasari, R. N., Budiarti, H. A., Hatta, A. M., Sekartedjo, and Risanti, D. D. 2017. Enhanced Dye-Sensitized Solar Cells Performance through Novel Core-shell Structure of Gold Nanoparticles and Nano-Silica Extracted from Lapindo Mud Vulcano. In Procedia Engineering (Vol. 170, pp. 93–100). https://doi.org/10.1016/j.proeng.2017.03.018.

Pyrzyńska, K., and Wierzbicki, T. 2005. Sorption behavior of vanadium on silica gel modified with tetrakis(4-carboxyphenyl)porphyrin. Analytical Sciences, 21(8), 951–954. https://doi.org/10.2116/analsci.21.951.

Schwantes, D., Gonçalves, A. C., Coelho, G. F., Campagnolo, M. A., Dragunski, D. C., Tarley, C. R. T., Miola, A. J., and Leismann, E. A. V. 2016. Chemical modifications of cassava peel as adsorbent material for metals ions from wastewater. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/3694174.

Tadanaga, K., Morita, K., Mori, K., and Tatsumisago, M. 2013. Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process. Journal of Sol-Gel Science and Technology, 68(2), 341–345. https://doi.org/10.1007/s10971-013-3175-6.

Talib, N. ., Triwahyono, S., Jalil, A. A., Mamat, C. ., Salamun, N., Fatah, N. A. ., Sidik, S. ., and Teh, L. 2016. Utilization of a cost effective Lapindo mud catalyst derived.pdf. Energy Conversion and Management, 108, 411–421.

Thirugnanam, L., Ganguly, D., and Sundara, R. 2021. PPy coated on SiO2 encapsulated porous carbon nanofibers as a potential anode material for high rate capable and long-life Li-ion battery. Materials Letters, 298, 130029. https://doi.org/10.1016/j.matlet.2021.130029.

Ulfa, M., Saraswati, T. E., and Mulyani, B. 2019. Adsorption of ibuprofen molecule onto mesoporous silica SBA-15 loaded by iron particles using arc discharge treatment. IOP Conference Series: Materials Science and Engineering, 509(1). https://doi.org/10.1088/1757-899X/509/1/012073.

Vicente-Martínez, Y., Caravaca, M., Soto-Meca, A., and Solana-González, R. 2020. Magnetic core-modified silver nanoparticles for ibuprofen removal: an emerging pollutant in waters. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-75223-1.

Zendelska, A., Golomeova, M., Blazev, K., Krstev, B., Golomeov, B., and Krstev, A. 2015. Adsorption of copper ions from aqueous solutions on natural zeolite. Environment Protection Engineering, 41(4), 17–36. https://doi.org/10.5277/epe150402.

Refbacks

  • There are currently no refbacks.