Molecular Docking and Pharmacophore Analysis of Compounds from Ginger (Zingiber officinale) as Inhibitor for Dengue DEN2 NS2B/NS3 Serine Protease

Neni Frimayanti, Enda Mora, Rindiyani Rindiyani

Abstract

Dengue hemorrhagic fever (DHF) is a disease caused by the dengue virus (DENV). Dengue virus can enter the human body through the Aedes aegypti and Aedes albopictus mosquitoes. According to the Indonesian Ministry of Health, dengue hemorrhagic fever (DHF) is still a serious health problem in Indonesia. The type of dengue virus serotype most commonly found to cause infection in the human body is the DENV-2 serotype. This study aims to determine whether Ginger (Zingiber officinale) isolate compounds have potential as dengue DEN-2 NS2B/NS3 inhibitors. Samples used are compounds with IUPAC names (S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl) octan-3-one (4-gingerol) and (S)-5-hydroxy-1-(3-methoxy-4-methylphenyl) decan-3-one. The method used is molecular docking and Pharmacophore using the MOE (Molecular Operating Environment) 2022.0901 software package. The results obtained based on the observed parameters of the two compounds isolated from ginger (Zingiber officinale) could be estimated as potential dengue DEN2 NS2B/NS3 inhibitors.

Keywords

docking; pharmacophore; dengue DEN2 NS2B/NS3; serine protease

Full Text:

PDF

References

Bitari, A., Imane Oualdi, I., Touzani, R., Elachouri, M., and Legssyer, A., 2023. Zingiber officinale Roscoe: A comprehensive review of clinical properties. Materials Today: Proceeding, 72(7), 3757‒3767. https://doi.org/10.1016/j.matpr.2022.09.316.

Chee, C. F., Abdullah, I., Buckle, M. J., and Rahman, N.A., 2010. An Efficient Synthesis of (±)-Panduratin A and (±) -Isopanduratin A, Inhibitors of Dengue-2 Viral Activity. Journal Tetrahedron Letters. 51(3), 495–498. https://doi.org/10.1016/j.tetlet.2009.11.030.

Kausar, M. A., Ali. A., Qiblawi, S., Shahid, S., Izhari, M.A., and Saral A., 2019. Molecular Docking Based Design of Dengue NS5 Methyltransferase Inhibitors. Bioinformation, 15(6), 394‒401. https://doi.org/10.6026%2F97320630015394.

Fatriansyah, J.F., Rizqillah, R. K., and Yandi. M. Y., 2022. Molecular Docking and Molecular Dynamics Simulation of Fisetin, Galangin, Hesperetin, Hesperidin, Myricetin, and Naringenin against Polymerase of Dengue Virus. Journal of Tropical Medicine, 20, 7254990. https://doi.org/10.1155/2022/7254990.

Fathima, A.J., Murugaboopathi, G., and Selvam, P., 2018. Pharmacophore Mapping of Ligand Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulation Studies for Finding Potent NS2B/NS3 Protease Inhibitors as Potential Anti-dengue Drug Compounds. Current Bioinformatics, 13(6), 606–616. http://dx.doi.org/10.2174/1574893613666180118105659.

Frimayanti, N., Yaeghoobi, M., Namavar, H., Ikhtiarudin, I., and Afzali, M., 2020. In Silico Studies and Biological Evaluation of Chalcone-Based 1,5-Benzothiazepines as New Potential H1N1 Neuraminidase Inhibitors. Journal of Applied Pharmaceutical Science, 10(10), 086‒094. http://dx.doi.org/10.7324/JAPS.2020.1010010.

Frimayanti, N., Ikhtiarudin, I., Septama, A.W., Susanti A., and Daiatul, N., 2023. Synthesis, In Silico and Structural Insight of Flavonol Derivative Compounds as New Competitive Dengue NS2B/NS3 Protease Inhibitor. Journal of Research in Pharmacy, 27(3), 1157‒1169. http://dx.doi.org/10.29228/jrp.406.

Frimayanti, N., Chee, C. F., Zain, S. M., and Rahman, N. A., 2011. Design of New Competitive Dengue Ns2b/Ns3 Protease Inhibitors—A Computational Approach. International journal of molecular sciences, 12(2), 1089‒1100. https://doi.org/10.1155/2022/7254990.

Habibi, R., Herfindo, N., Hendra, R., Teruna, H.Y., and Zamri, A., 2020. Synthesis and Molecular Docking Study of 1-(3- Chloropropyl) -3,5- Bis ((E)-4-Methoxybenzylidene) Piperidin-4-One as Dengue Virus Type 2 (DEN2) NS2B/NS3 Protease Inhibitor Candidate. Pharmacology and Clinical Pharmacy Research, 5(1), 14. https://doi.org/10.15416/pcpr.v5i1.25624.

Jung, S. W., Minsup, K., Steven, R., Tom, K., and Art, E. C., 2018. Water Pharmacophore: Designing Ligands using Molecular Dynamics Simulations with Water, Scientific Reports, 1(1), 11. https://doi.org/10.1038/s41598-018-28546-z.

Kristam, 2013. 3D-QSAR Analysis of TRPV1 inhibitors Reveals a Pharmacophore Applicable to Diverse Scaffolds and Clinical Candidates. India: Department of Computational Chemistry.

Prieto-Martínez, F. D., Arciniega, M., and Medina-Franco, J. L., 2018. Molecular docking: Current Advance and Challenges. TIP Revista Especializada En Ciencias Químico-Biológicas, 21, 65–87. https://doi.org/10.22201/fesz.23958723e.2018.0.143.

Qi, R., Zhang. L., and Chi. C., 2007. Biological Characteristics of Dengue Virus and Potential Targets for Drug Design. Acta Biochimica et Biophysica Sinica, 40(2), 91–101. https://doi.org/10.1111/j.1745-7270.2008.00382.x.

Rachmayanti, N., 2015. Struktur Proteomik Virus Dengue dan Manfaatnya sebagai Target Antivirus. Majalah Kedokteran Andalas, 37(2), 136–142. https://doi.org/10.22338/mka.v37.i2.p136-142.2014.

Sindhu, T., and Srinivasan, P., 2014. Pharmacophore modeling, 3D-QSAR, and molecular docking studies of benzimidazole derivatives as potential FXR agonists. Journal of Receptors and Signal Transduction, 34(4), 241–253.

Suadyani, I.A.A., and Sudarmaja, M.I., 2016. Pengaruh Konsentrasi Ekstrak Etanol Rimpang Jahe Merah (Zingiber officinale rosc) Terhadap kematian Larva Nyamuk Aedes aegypti. E-jurnal Medika, 6(11), 108–111.

Wang, B., Yang, H., Feng, Y., Zhou, H., Dai, J., Hu, Y., Zhang, L., Wang, Y., Baloch, Z., and Xia, X., 2016. The Distinct Distribution and Phylogenetic Characteristics of Dengue Virus Serotypes/Genotypes During The 2013 Outbreak in Yunnan, China. Infection, Genetics and Evolution, 37, 1–7. https://doi.org/10.1016/j.meegid.2015.10.022.

Refbacks

  • There are currently no refbacks.