Deoksigenasi Katalitik Metil Ester Asam Lemak Menjadi Biohidrokarbon Menggunakan Katalis Cr2O3/Zeolit

Isalmi Aziz, Nanda Saridewi, Fitri Febriyani, Lisa Adhani

Abstract

Deoksigenasi katalitik merupakan proses yang dapat mengkonversi metil ester asam lemak (fatty acid methyl esters, FAME) menjadi biohidrokarbon seperti gasolin, kerosin dan diesel. Katalis yang digunakan berupa Cr2O3 dengan penyangga zeolit alam. Penelitian ini bertujuan untuk menentukan pengaruh konsentrasi Cr2O3 terhadap karakteristik dan aktivitas katalitik katalis pada deoksigenasi katalitik FAME menjadi biohidrokarbon. Katalis dikarakterisasi menggunakan XRD, FTIR DAN SAA. Semua katalis menunjukkan puncak Cr2O3 pada 2θ 24,5°; 33,6°; 36,2°;54,8° dan ukuran kristal 19 ‒ 21 nm. Serapan pada bilangan gelombang 470 ‒ 900 cm-1 mengindikasikan adanya peregangan Cr‒O. Peningkatan konsentrasi Cr2O3 menyebabkan luas permukaan menjadi turun. Katalis Cr2O3/zeolit 1% menunjukkan aktivitas terbesar dengan konversi 60,36% dan selektivitas biohidrokarbon 43,15% yang terdiri dari gasolin 7,23%, kerosin 15,08% dan diesel 20,84%.

Catalytic Deoxygenation of Fatty Acid Methyl Esters into Biohydrocarbons using Cr2O3/Zeolite Catalysts. Catalytic deoxygenation is a process that can convert fatty acid methyl esters (FAME) into biohydrocarbons such as gasoline, kerosene, and diesel. The catalyst used is Cr2O3 with natural zeolite as support. This study aims to determine the effect of Cr2O3 concentration on the characteristics and catalytic activity in the catalytic deoxygenation of FAME into biohydrocarbons. The catalysts were characterized using XRD, FTIR, and SAA. All catalysts show a Cr2O3 peak at 2θ 24.5°, 33.6°, 36.2°, 54.8° and a crystal size of 19 ‒ 21 nm. The Cr‒O stretching is observable at wavenumbers 470 ‒ 900 cm-1. Increasing the concentration of Cr2O3 causes the surface area to decrease. Cr2O3/zeolite 1% catalyst showed the most excellent activity with 60.36% conversion and 43.15% selectivity for biohydrocarbons consisting of 7.23% gasoline, 15.08% kerosene, and 20.84% diesel.

Keywords

biohydrocarbon; catalytic deoxygenation; fatty acid methyl esters; nature zeolite.

Full Text:

PDF

References

Ameen, M., Azizan, M. T., Ramli, A., Yusup, S., and Abdullah, B., 2020. The Effect of Metal Loading Over Ni/γ-Al2O3 and Mo/γ-Al2O3 Catalysts on Reaction Routes of Hydrodeoxygenation of Rubber Seed Oil for Green Diesel Production. Catalysis Today, 355, 51–64. https://doi.org/10.1016/j.cattod.2019.03.028.

Ashokkumar, S., Ganesan, V., Ramaswamy, K. K., and Balasubramanian, V., 2018. Bimetallic Co–Ni/TiO2 Catalysts for Selective Hydrogenation of Cinnamaldehyde. Research on Chemical Intermediates, 44(11), 6703–6720. https://doi.org/10.1007/s11164-018-3517-7.

Aziz, I., 2007. Kinetika Reaksi Transesterifikasi Minyak Goreng Bekas. Jurnal Kimia VALENSI, 1(1). https://doi.org/10.15408/jkv.v1i1.209.

Aziz, I., Adhani, L., Yolanda, T., and Saridewi, N., 2019. Catalytic Cracking of Jatropa Curcas Oil Using Natural Zeolite of Lampung as a Catalyst. IOP Conference Series: Earth and Environmental Science, 299(1), 012065. https://doi.org/10.1088/1755-1315/299/1/012065.

Aziz I., Ardine, E. A. F., Saridewi, N., and Adhani, L., 2021. Catalytic Cracking of Crude Biodiesel into Biohydrocarbon Using Natural Zeolite Impregnated Nickel Oxide Catalyst. Jurnal Kimia Sains Dan Aplikasi, 24(7), 222–227. https://doi.org/10.14710/jksa.24.7.222-227.

Aziz I., Gustama D., Retnaningsih T., Saridewi N., Adhani L., Dwiatmoko A. A., and Ridwan M., 2022. Synthesis of NiCo/Hierarchical Zeolite Catalyst for Catalytic Cracking of Jatropha oil. RASAYAN Journal of Chemistry, 15(03), 2026–2031. https://doi.org/10.31788/RJC.2022.1537003.

Aziz I., Kurnianti, Y., Saridewi, N., Adhani, L., and Permata, W., 2020. Utilization of Coconut Shell as Cr2O3 Catalyst Support for Catalytic Cracking of Jatropha Oil into Biofuel. Jurnal Kimia Sains Dan Aplikasi, 23(2), 39–45. https://doi.org/10.14710/jksa.23.2.39-45.

Baharudin K. B., Abdullah, N., Taufiq-Yap, Y. H., and Derawi, D., 2020. Renewable Diesel Via Solventless and Hydrogen-Free Catalytic Deoxygenation of Palm Fatty Acid Distillate. Journal of Cleaner Production, 274, 122850. https://doi.org/10.1016/j.jclepro.2020.122850.

Baharudin. K. B., Taufiq-Yap, Y. H., Hunns, J., Isaacs, M., Wilson, K., and Derawi, D., 2019. Mesoporous NiO/Al-SBA-15 Catalysts for Solvent-Free Deoxygenation of Palm Fatty Acid Distillate. Microporous and Mesoporous Materials, 276, 13–22. https://doi.org/10.1016/j.micromeso.2018.09.014.

Gamal M. S., Asikin-Mijan, N., Khalit, W. N. A. W., Arumugam, M., Izham, S. M., and Taufiq-Yap, Y. H., 2020. Effective Catalytic Deoxygenation of Palm Fatty Acid Distillate for Green Diesel Production Under Hydrogen-Free Atmosphere Over Bimetallic Catalyst Como Supported on Activated Carbon. Fuel Processing Technology, 208, 106519. https://doi.org/10.1016/j.fuproc.2020.106519.

Hongloi N., Prapainainar, P., and Prapainainar, C., 2022. Review of Green Diesel Production From Fatty Acid Deoxygenation Over Ni-Based Catalysts. Molecular Catalysis, 523, 111696. https://doi.org/10.1016/j.mcat.2021.111696.

Istadi I., Riyanto, T., Buchori, L., Anggoro, D. D., Saputra, R. A., and Muhamad, T. G., 2020. Effect of Temperature on Plasma-Assisted Catalytic Cracking of Palm Oil into Biofuels. International Journal of Renewable Energy Development, 9(1), 107–112. https://doi.org/10.14710/ijred.9.1.107-112.

Jeon K.-W., Park, H.-R., Lee, Y.-L., Kim, J.-E., Jang, W.-J., Shim, J.-O., and Roh, H.-S., 2022. Deoxygenation of Non-Edible Fatty Acid For Green Diesel Production: Effect of Metal Loading Amount over Ni/MgO–Al2O3 on The Catalytic Performance and Reaction Pathway. Fuel, 311, 122488. https://doi.org/10.1016/j.fuel.2021.122488.

Jujarama, Wijaya, K., Shidiq, M., Fahrurrozi, M., and Suheryanto, 2014. Synthesis of Biogasoline from Used Palm Cooking Oil Through Catalytic Hydrocracking by Using Cr-Activated Natural Zeolite as Catalyst. Asian Journal of Chemistry, 26(16), 5033–5038. https://doi.org/10.14233/ajchem.2014.16299.

Kamaruzaman, M. F., Taufiq-Yap, Y. H., and Derawi, D., 2020. Green Diesel Production from Palm Fatty Acid Distillate Over SBA-15-Supported Nickel, Cobalt, And Nickel/Cobalt Catalysts. Biomass and Bioenergy, 134, 105476. https://doi.org/10.1016/j.biombioe.2020.105476.

Liu, C., Yang, H., Jing, Z., Xi, K., and Qiao, C., 2016. Hydrodeoxygenation of Fatty Acid Methyl Esters and Isomerization of Products over NiP/SAPO-11 Catalysts. Journal of Fuel Chemistry and Technology, 44(10), 1211–1216. https://doi.org/10.1016/S1872-5813(16)30052-4.

Nugrahaningtyas K. D., Cahyono, E., and Widjonarko, D. M., 2016. The Paraffin Cracking Reaction With Nimo/Active Natural Zeolite Catalyst: The Effect Temperature on Catalytic Activity the Paraffin Cracking Reaction With Nimo/Active Natural Zeolite Catalyst: The Effect Temperature on Catalytic Activity. ALCHEMY Jurnal Penelitian Kimia, 11(2), 111–126. https://doi.org/10.20961/alchemy.11.2.712.111-126.

Rahmani, F., Haghighi, M., and Amini, M., 2015. The Beneficial Utilization of Natural Zeolite in Preparation of Cr/Clinoptilolite Nanocatalyst Used In CO2-Oxidative Dehydrogenation of Ethane to Ethylene. Journal of Industrial and Engineering Chemistry, 31, 142–155. https://doi.org/10.1016/j.jiec.2015.06.018.

Safa Gamal, M., Asikin-Mijan, N., Arumugam, M., Rashid, U., and Taufiq-Yap, Y. H., 2019. Solvent-free Catalytic Deoxygenation of Palm Fatty Acid Distillate Over Cobalt and Manganese Supported on Activated Carbon Originating from Waste Coconut Shell. Journal of Analytical and Applied Pyrolysis, 144, 104690. https://doi.org/10.1016/j.jaap.2019.104690.

Saraswati, I., 2016. Zeolite-A Synthesis from Glass. Jurnal Sains Dan Matematika, 23(4), 112–115. <https://ejournal.undip.ac.id/index.php/sm/article/view/10485>.

Sundaryano, A. and Budiyanto, 2010. Pembuatan Bahan Bakar Hidrokarbon Cair Melalui Reaksi Cracking Minyak pada Limbah Cair Pengolahan Kelapa Sawit. Juranal Teknologi. Industri Pertanian, 20(1), 1–9. <http://repository.unib.ac.id/id/eprint/7907>.

Sundaryono, A., Handayani, D., Budiman, and Winda, S., 2015. Perengkahan Katalitik Metil Ester dari Minyak Limbah Cair Pabrik Minyak Kelapa Sawit Dengan Katalis Cr/Mo/HZA Dan Ni/Mo/HZA. Jurnal Teknologi Industri Pertanian, 25(1), 78–84. <https://journal.ipb.ac.id/index.php/jurnaltin/article/view/9707>.

Wijaya, K., Baobalabuana, G., Trisunaryanti, W., and Syoufian, A., 2013. Hydrocracking of Palm Oil into Biogasoline Catalyzed by Cr/Natural Zeolite. Asian Journal of Chemistry, 25(16), 8981–8986. https://doi.org/10.14233/ajchem.2013.14946.

Yu, C., Yu, S., and Li, L., 2022. Upgraded Methyl Oleate to Diesel-Like Hydrocarbons Through Selective Hydrodeoxygenation Over Mo-Based Catalyst. Fuel, 308, 122038. https://doi.org/10.1016/j.fuel.2021.122038.

Refbacks

  • There are currently no refbacks.