Pemanfaatan Silika dari Abu Sekam Padi untuk Pembuatan Material Imprinted Ionic sebagai Adsorben Ion Logam Pb(II)

Sri Hastuti, Tri Martini, Agustina Tri Utami

Abstract

Sintesis material imprinted ionic Pb(II) (SiO2-TMPDT-Pb-Imp) menggunakan natrium silikat dari abu sekam padi (Na­2SiO3(ASP)) telah berhasil dilakukan pada penelitian ini dengan memanfaatkan abu sekam padi sebagai sumber silika untuk pembuatan natrium silikat (Na­2SiO3(ASP)). Modifier yang digunakan adalah N1-(3-trimethoxysilylpropyl)diethylentriamine (TMPDT) dan ion logam Pb(II) berfungsi sebagai templat. Uji kapasitas adsorpsi SiO2‒TMPDT‒Pb‒Imp terhadap ion logam Pb(II) dilakukan pada variasi pH (1 ‒ 6) dan waktu kontak (0 ‒ 120) menit dengan sistem batch. Karakterisasi material SiO2‒TMPDT‒Pb-Imp dilakukan dengan menggunakan Fourier Transform Infrared (FTIR), Scanning Electron Microscope and Energy Dispersive X-ray (SEM-EDX), dan Surface Area Analyzer (SAA).  Berdasarkan data FTIR dan SEM-EDX menunjukkan bahwa material SiO2‒TMPDT‒Pb‒Imp memiliki gugus silanol (Si‒OH); siloksan (Si‒O‒Si); alkana dan gugus amin dengan morfologi material yang halus serta terdapat unsur karbon (C) dan nitrogen (N) sebanyak 44,4% dan 8,3% secara berurutan. Hasil karakterisasi dengan SAA menunjukkan bahwa material SiO2‒TMPDT‒Pb‒Imp memiliki luas permukaan sebesar 7,418 m2/g, volume pori total sebesar 0,012 cc/g dan jari-jari pori sebesar 16,670 Å. Kondisi terbaik adsorpsi ion logam Pb(II) terjadi pada pH 5 dan waktu kontak 60 menit yang mengikuti model kinetika adsorpsi Pseudo Orde 2 dengan kapasitas adsorpsi sebesar 1,2418 mg/g.

Utilization of Silica from Rice Husk Ash for Preparing Imprinted Ionic Materials as Pb(II) Metal Ion Adsorbent. Imprinted ionic Pb(II) (SiO2-TMPDT-Pb-Imp) material was synthesized using a solution of sodium silicate from rice husk ash (Na­2SiO3(RHA)) in this study using rice husk ash as a source of silica for sodium silicate (Na2SiO3(ASP)). The modifier used is N1-(3-trimethoxysilylpropyl) diethylenetriamine (TMPDT) and Pb(II) metal ion as a template. The SiO2‒TMPDT‒Pb‒Imp adsorption capacity of Pb(II) metal ion was performed on solution pH (1 ‒ 6) and contact time of (0 ‒ 120) minutes by the batch system. Material characterization was performed by Fourier Transform Infrared (FTIR), Scanning Electron Microscope and Energy Dispersive X-ray (SEM-EDX), and Surface Area Analyzer (SAA). Based on FTIR and SEM-EDX showed that SiO2‒TMPDT‒Pb‒Imp had a silanol group (Si‒OH), siloxane group (Si‒O‒Si), alkane and amine group with finer material morphology and presence of carbon (C) and nitrogen (N) element of 44.4% and 8.3% respectively. SAA characterization indicated that SiO2‒TMPDT‒Pb‒Imp had a surface area of 7.418 m2/g, total pore volume of 0.012 cc/g, and pore radius of 16.670 Å. The optimum condition of Pb(II) metal ion adsorption was obtained at pH 5 and a contact time of 60 min that followed the Pseudo Orde 2 adsorption kinetic model with an adsorption capacity of 1.2418 mg/g.

Keywords

rice husk ash; adsorption; imprinted ionic; Pb(II); silica.

Full Text:

PDF

References

Azmiyawati, C., 2004. Modifikasi Silika Gel dengan Gugus Sulfonat untuk Meningkatkan Kapasitas Adsorpsi Mg(II). Jurnal Kimia Sains dan Aplikasi, 7(1), 10–16. https://doi.org/10.14710/jksa.7.1.10-16.

Budiman, H., Sri H.K., F., and Setiawan, A. H., 2009. Preparation of Silica Modified with 2-Mercaptoimidazole and Its Sorption Properties of Chromium(III). E-Journal of Chemistry, 6(1), 141–150. https://doi.org/10.1155/2009/647505.

Buhani, Narsito, Nuryono, and Kunarti, E. S., 2010. Production of Metal Ion Imprinted Polymer from Mercapto-Silica Through Sol-Gel Process as Selective Adsorbent of Cadmium. Desalination, 251(1–3), 83–89. https://doi.org/10.1016/j.desal.2009.09.139.

Fathonah, R., Mahardiani, L., and Sukardjo, J. S., 2012. Preparasi dan Aplikasi Silika Gel yang Bersumber dari Biomassa untuk Adsorpsi Logam Berat. In Seminar Nasional Kimia dan Pendidikan Kimia IV, 31, 82–88.

Hamoudi, S., El-Nemr, A., and Belkacemi, K., 2010. Adsorptive Removal of Dihydrogenphosphate Ion from Aqueous Solutions Using Mono, Di- and Tri-Ammonium-Functionalized SBA-15. Journal of Colloid and Interface Science, 343(2), 615–621. https://doi.org/10.1016/j.jcis.2009.11.070.

Hartati, I., Riwayati, I., and Kurniasari, L., 2011. Potensi Xanthate Pulpa Kopi sebagai Adsorben pada Pemisahan Ion Timbal dari Limbah Industri Batik. Momentum, 7(2), 25–30. http://dx.doi.org/10.36499/jim.v7i2.102.

Hasri, 2015. Studi Adsorpsi Logam Pb (II) Menggunakan Adsorben Biomassa Aspergillus niger Hasil Pemerangkapan. Jurnal Sansmat, IV(2), 126–135. https://doi.org/10.35580/sainsmat4218632015

Hastuti, S., Nuryono, and Kuncaka, A., 2015. L-Arginine-Modified Silica for Adsorption of Gold(III). Indonesian Journal of Chemistry, 15(2), 108–115. https://doi.org/10.22146/ijc.21203.

Hastuti, S., Wahyuningsih, S., Martini, T., Fajariani, E. N., and Candraningrum, I. K., 2020. Synthesis of N'-(3-trimethoxysilylpropyl) Diethylentriamine Modified Silica (SiO2(RHA)-TMPDT) for Adsorption of Gold (III). In AIP Conference Proceedings, 2237(1), 1–7. https://doi.org/10.1063/5.0008267.

Heidari, A., Younesi, H., and Mehraban, Z., 2009. Removal of Ni(II), Cd(II), and Pb(II) from a Ternary Aqueous Solution by Amino Functionalized Mesoporous and Nano Mesoporous Silica. Chemical Engineering Journal, 153(1–3), 70–79. https://doi.org/10.1016/j.cej.2009.06.016

Jabbari-Gargari, A., Moghaddas, J., Hamishehkar, H., and Jafarizadeh-Malmiri, H., 2021. Carboxylic Acid Decorated Silica Aerogel Nanostructure as Drug Delivery Carrier. Microporous and Mesoporous Materials, 323, 111220. https://doi.org/10.1016/j.micromeso.2021.111220.

Jal, P. K., Patel, S., and Mishra, B. K., 2004. Chemical Modification of Silica Surface by Immobilization of Functional Groups for Extractive Concentration of Metal Ions. Talanta, 62(5), 1005–1028. https://doi.org/10.1016/j.talanta.2003.10.028.

Jiaqi, Z., Yimin, D., Danyang, L., Shengyun, W., Liling, Z., and Yi, Z., 2019. Synthesis of Carboxyl-Functionalized Magnetic Nanoparticle for The Removal of Methylene Blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572(March), 58–66. https://doi.org/10.1016/j.colsurfa.2019.03.095.

Jin, L., and Bai, R., 2002. Mechanisms of Lead Adsorption On Chitosan/PVA Hydrogel Beads. Langmuir, 18(25), 9765–9770. https://doi.org/10.1021/la025917l.

Li, F., Jiang, H., and Zhang, S., 2007. An Ion-Imprinted Silica-Supported Organic-Inorganic Hybrid Sorbent Prepared by A Surface Imprinting Technique Combined with A Polysaccharide Incorporated Sol-Gel Process for Selective Separation of Cadmium(II) from Aqueous Solution. Talanta, 71(4), 1487–1493. https://doi.org/10.1016/j.talanta.2006.07.023.

Liu, Y., Liu, Z., Gao, J., Dai, J., Han, J., Wang, Y., Xie, J., and Yan, Y., 2011. Selective Adsorption Behavior of Pb(II) by Mesoporous Silica SBA-15-Supported Pb(II)-Imprinted Polymer Based on Surface Molecularly Imprinting Technique. Journal of Hazardous Materials, 186(1), 197–205. https://doi.org/10.1016/j.jhazmat.2010.10.105.

Mahmoud, M. E., Masoud, M. S., and Maximous, N. N., 2004. Synthesis, Characterization and Selective Metal Binding Properties of Physically Adsorbed 2-Thiouracil on The Surface of Porous Silica and Alumina. Microchimica Acta, 147, 111–115. https://doi.org/10.1007/s00604-004-0210-x.

Nurhasni, N., Hendrawati, H., and Saniyyah, N., 2014. Sekam Padi untuk Menyerap Ion Logam Tembaga dan Timbal dalam Air Limbah. Jurnal Kimia VALENSI, 4(1), 36–44. https://doi.org/10.15408/jkv.v4i1.1074.

Robles-Jimarez, H. R., Sanjuan-Navarro, L., Jornet-Martínez, N., Primaz, C. T., Teruel-Juanes, R., Molins-Legua, C., Ribes-Greus, A., and Campíns-Falcó, P., 2022. New silica based adsorbent material from rice straw and its in-flow application to nitrate reduction in waters: Process sustainability and scale-up possibilities. Science of the Total Environment, 805(150317), 1–12. https://doi.org/10.1016/j.scitotenv.2021.150317.

Roldan, P. S., Alcântara, I. L., Padilha, C. C. F., and Padilha, P. M., 2004. Determination of Copper, Iron, Nickel and Zinc in Fuel Kerosene by FAAS After Adsorption and Pre-Concentration on 2-Aminotiazole-Modified Silica Gel. Eclectica Quimica, 29, 33–40. https://doi.org/10.1016/j.fuel.2004.08.001.

Sakti, S. C. W., Siswanta, D., and Nuryono., 2013. Adsorption of Gold(III) on Ionic Imprinted Amino-Silica Hybrid Prepared from Rice Hull Ash. Pure and Applied Chemistry, 85(1), 211–223. https://doi.org/10.1351/PAC-CON-12-01-02.

Sharma, S., Kumar Walia, Y., Grover, G., and Sanjeev, V. K., 2022. Effect of Surface Modification of Silica Nanoparticles with Thiol group on the Shear Thickening Behaviors of the Suspensions of Silica Nanoparticles in Polyethylene Glycol (PEG). IOP Conference Series: Materials Science and Engineering, 1225(1), 012053. https://doi.org/10.1088/1757-899x/1225/1/012053.

Sriyanti, S., Azmiyawati, C., and Taslimah, T. 2005. Adsorpsi Kadmium(II) pada Bahan Hibrida Tiol-Silika dari Abu Sekam Padi. Jurnal Kimia Sains dan Aplikasi, 8(2), 48–54. https://doi.org/10.14710/jksa.8.2.48-54.

Suka, I. G., Simanjutak, W., Sembiring, S., and Trisnawati, E. 2008. Karakteristik Silika Sekam Padi dari Provinsi Lampung yang Diperoleh dengan Metode Ekstraksi. MIPA dan Pembelajarannya, 37(1).

Sulastri, S., and Kristianingrum, S., 2010. Berbagai Macam Senyawa Silika : Sintesis, Karakterisasi dan Pemanfaatan. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA. 15 Mei 2010, Yogyakarta, DIY. Universitas Negeri Yogyakarta, Indonesia, pp. 211–216.

Zhang, N., Hu, B., and Huang, C., 2007. A New Ion-Imprinted Silica Gel Sorbent for On-Line Selective Solid-Phase Extraction of Dysprosium(III) with Detection by Inductively Coupled Plasma-Atomic Emission Spectrometry. Analytica Chimica Acta, 597(1), 12–18. https://doi.org/10.1016/j.aca.2007.06.045.

Refbacks

  • There are currently no refbacks.