Sintesis Senyawa 4-(Dimetilamino)calkon Menggunakan Microwave-Assisted Organic Synthesis (MAOS) dengan Variasi Konsentrasi NaOH dan Prediksi Profil Farmakokinetik

Iin Narwanti, Aisyah Khairani Hidayati

Abstract

Senyawa calkon dan turunannya mempunyai aktivitas farmakologi dengan aplikasi yang luas, karenya sintesis senyawa tersebut perlu dipelajari. Oleh karena itu, penelitian ini bertujuan untuk mensintesis 4-(dimetilamino)calkon dari dalam suasana basa dengan metode Microwave-Assisted Organic Synthesis (MAOS) dan memprediksi profil farmakokinetiknya. 4-(dimetilamino)calkon direaksikan dengan asetofenon dengan adanya basa NaOH. Sintesis 4-(dimetilamino)calkon dilakukan dengan iradiasi selama 25 detik dengan daya 140 watt. Variasi konsentrasi katalis NaOH yang digunakan adalah 40%, 50%, dan 60%. Rekristalisasi dilakukan dengan menggunakan pelarut etanol. Produk sintesis dikarakterisasi dengan penentuan titik lebur, KLT, spektrofotometri inframerah, spektrometri massa, 1H-NMR dan 13C-NMR. Selanjutnya, profil farmakokinetik 4-(dimetilamino)calkon diprediksi dengan menggunakan web server SwissADME. Hasil penelitian menunjukkan bahwa rata-rata rendemen sintesis 4-(dimetilamino)calkon dengan metode MAOS pada variasi konsentrasi katalis NaOH 40%, 50%, dan 60% berturut-turut adalah 73,4±1,72%; 90,9±0,68% dan 85,1±1,32%. Konsentrasi NaOH 50% menghasilkan rendemen produk sintesis yang paling optimal. Prediksi sifat fisikokimia dan profil farmakokinetik menggunakan SwissADME menunjukkan bahwa senyawa 4-(dimetilamino)calkon memenuhi aturan Lipinski’s Rule of Five dan mempunyai penyerapan gastrointestinal yang baik dan mampu melewati blood brain barrier (BBB).

Synthesis of 4-(Dimethylamino)chalcone Compound Using Microwave-Assisted Organic Synthesis (MAOS) with Various NaOH Concentration and Pharmacokinetic Profile Prediction. Chalcones and their derivatives are widely established to have a wide application pharmacological activity; therefore, the synthesis is necessary to study. This study aimed to synthesize 4-dimethylaminochalcone in the presence of a base using Microwave-Assisted Organic Synthesis (MAOS) method and predict its pharmacokinetic profile. 4-(dimethylamino)benzaldehyde was treated with acetophenone in the presence of NaOH with various concentrations (40%, 50%, and 60%). Irradiation was conducted for 25 seconds with a power of 140 watts. Recrystallization was carried out from ethanol to give the expected product. The crude product was characterized by melting point determination, TLC, infrared spectrophotometry, mass spectrometry, 1H-NMR, and 13C-NMR. Furthermore, pharmacokinetic profiles of 4-(dimethylamino)chalcone were predicted using the SwissADME web server. The results showed that the average yield of the synthesized product using the MAOS method with catalyst NaOH 40%, 50%, and 60% was 73.4±1.72%, 90.9±0.68%, and 85.1±1.32%, respectively. The optimal yield was obtained using a 50% concentration of NaOH. The pharmacokinetic profiles of 4-(dimethylamino)chalcone analysis using the SwissADME web server showed that 4-(dimethylamino)chalcone complied with Lipinski's Rule of Five. Furthermore, it might have good gastrointestinal absorption and might be able to cross the blood-brain barrier (BBB).

Keywords

4-(dimethylamino) chalcone; Pharmacokinetic; microwave irradiation; MAOS.

Full Text:

PDF

References

Ahmad, M. R., Girija Sastry, V., Bano, N., and Anwar, S., 2016. Synthesis of Novel Chalcone Derivatives by Conventional and Microwave Irradiation Methods and Their Pharmacological Activities. Arabian Journal of Chemistry, 9, S931‒S935. https://doi.org/10.1016/j.arabjc.2011.09.002.

Bhuiyan, M. M. H., Hossain, M. I., Mahmud, M., and Al-Amin, M., 2011. Microwave-Assisted Efficient Synthesis of Chalcones as Probes for Antimicrobial Activities. Journal of Chemistry, 1(1), 21‒28.

Calvino, V., Picallo, M., López-Peinado, A. J., Martín-Aranda, R. M., and Durán-Valle, C. J., 2006. Ultrasound Accelerated Claisen–Schmidt Condensation: a Green Route to Chalcones. Applied Surface Science, 252(17), 6071‒6074. https://doi.org/10.1016/j.apsusc.2005.11.006.

Castaño, L. F., Cuartas, V., Bernal, A., Insuasty, A., Guzman, J., Vidal, O., Rubio, V., Puerto, G., Lukáč, P., Vimberg, V., Balíková-Novtoná, G., Vannucci, L., Janata, J., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., and Insuasty, B., 2019. New Chalcone-Sulfonamide Hybrids Exhibiting Anticancer and Antituberculosis Activity. European Journal of Medicinal Chemistry, 176, 50‒60. https://doi.org/10.1016/j.ejmech.2019.05.013.

Daina, A., Michielin, O., and Zoete, V., 2017. SwissADME: A Free Web Tool To Evaluate Pharmacokinetics, Drug-Likeness And Medicinal Chemistry Friendliness Of Small Molecules. Scientific Report, 7, 42717. https://doi.org/10.1038/srep42717.

Dias, T. A., Duarte, C. L., Lima, C. F., Proença, M. F., and Pereira-Wilson, C., 2013. Superior Anticancer Activity of Halogenated Chalcones and Flavonols Over the Natural Flavonol Quercetin. European Journal of Medicinal Chemistry, 65, 500‒510. https://doi.org/10.1016/j.ejmech.2013.04.064.

Dyrager, C., Wickström, M., Fridén-Saxin, M., Friberg, A., Dahlén, K., Wallén, E. A., Gullbo, J., Grøtli, M., and Luthman, K., 2011. Inhibitors and Promoters of Tubulin Polymerization: Synthesis and Biological Evaluation of Chalcones and Related Dienones as Potential Anticancer Agents. Bioorganic & Medicinal Chemistry, 19(8), 2659‒2665. https://doi.org/10.1016/j.bmc.2011.03.005.

Fuchigami, T., Yamashita, Y., Haratake, M., Ono, M., Yoshida, S., and Nakayama, M., 2014. Synthesis and Evaluation of Ethyleneoxylated and Allyloxylated Chalcone Derivatives for Imaging of Amyloid Β Plaques By SPECT. Bioorganic & Medicinal Chemistry, 22(9), 2622‒2628. https://doi.org/10.1016/j.bmc.2014.03.032.

Grewal, A., Kumar, K., Redhu, S., and Bhardwaj, S., 2013. Microwave Assisted Synthesis: a Green Chemistry Approach. International Research Journal of Pharmaceutical and Applied Sciences, 3, 278‒285.

Guha, C., Mondal, R., Pal, R., and Mallik, A. K., 2013. Two Expedient 'One-Pot' Methods for Synthesis of Β-Aryl-Β-Mercaptoketones over Anhydrous Potassium Carbonate or Amberlyst-15 Catalyst. Journal of Chemical Sciences, 125(6), 1463‒1470. https://doi.org/10.1007/s12039-013-0513-8.

Handayani, S., Teruna, H. Y., and Zamri, A., 2013. Sintesis Analog Kalkon (E)-3-(2-Klorofenil)-1-(4'metoksifenil)-Prop-2-En-1-On dan Uji Toksisitas dengan Metode Brine Shrimp Lethal Test (BSLT). Indonesian Chemica Acta, 4(1), 17‒20.

Hu, Y., Hu, C., Pan, G., Yu, C., Ansari, M. F., Yadav Bheemanaboina, R. R., Cheng, Y., Zhou, C., and Zhang, J., 2021. Novel Chalcone-Conjugated, Multi-Flexible End-Group Coumarin Thiazole Hybrids as Potential Antibacterial Repressors Against Methicillin-Resistant Staphylococcus Aureus. European Journal of Medicinal Chemistry, 222, 113628. https://doi.org/10.1016/j.ejmech.2021.113628.

Ibrahim, A. R., Al-Saadi, B. S., Husband, J., Ismail, A. H., Baqi, Y., and Abou-Zied, O. K., 2023. Electron Transfer from a New Chalcone Dye to TiO2 Nanoparticles: Synthesis, Photophysics, and Excited-State Dynamics. Journal of Molecular Structure, 1271, 134012. https://doi.org/10.1016/j.molstruc.2022.134012.

Jain, U. K., Bhatia, R. K., Rao, A. R., Singh, R., Saxena, A. K., and Sehar, I., 2014. Design and Development of Halogenated Chalcone Derivatives as Potential Anticancer Agents. Tropical Journal of Pharmaceutical Research, 13(1). https://doi.org/10.4314/tjpr.v13i1.11.

Kłósek, M., Kuropatnicki, A. K., Szliszka, E., Korzonek-Szlacheta, I., and Król, W., 2017. Chalcones Target the Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (TRAIL) Signaling Pathway for Cancer Chemoprevention. In R. R. Watson (Ed.), Nutrition and Functional Foods for Healthy Aging (pp. 233‒244). Academic Press. https://doi.org/10.1016/B978-0-12-805376-8.00020-4.

Konduru, N. K., Dey, S., Sajid, M., Owais, M., and Ahmed, N., 2013. Synthesis and Antibacterial and Antifungal Evaluation of Some Chalcone Based Sulfones and Bisulfones. European Journal of Medicinal Chemistry, 59, 23‒30. https://doi.org/10.1016/j.ejmech.2012.09.004.

Liu, Y., Wang, C., Tong, Y., Ling, Y., Zhou, C., and Xiong, B., 2021. Cascade Reaction of α, β-Unsaturated Ketones and 2-Aminoaryl Alcohols for the Synthesis of 3-Acylquinolines by a Copper Nanocatalyst. Advanced Synthesis & Catalysis, 363(18), 4422‒4429. https://doi.org/10.1002/adsc.202100631.

Mandge, S., Singh, H. P., Gupta, S. D., and Moorthy, N. S. H. N., 2007. Synthesis and Characterization of Some Chalcone Derivatives. Trends in Applied Sciences Research, 2(1), 52‒56. https://doi.org/10.3923/tasr.2007.52.56.

Mellado, M., Sariego-Kluge, R., Valdés-Navarro, F., González, C., Sánchez-González, R., Pizarro, N., Villena, J., Jara-Gutierrez, C., Cordova, C., Bravo, M. A., and Aguilar, L. F., 2023. Synthesis of Fluorescent Chalcones, Photophysical Properties, Quantitative Structure-Activity Relationship and Their Biological Application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 291, 122332. https://doi.org/10.1016/j.saa.2023.122332.

Murtaza, S., Mir, Z. K., Tatheer, A., and Ullah, S. R., 2019. Synthesis and Evaluation of Chalcone and its Derivatives as Potential Anticholinergic Agents. Letters in Drug Design & Discovery, 16(3), 322‒332. https://doi.org/10.2174/1570180815666180523085436.

Narwanti, I., and Kusumajati, N. B., 2019. Optimation of NaOH catalyst concentration on 1,3-diphenyl-2-propen-1-on synthesis using Microwave-Assisted Organic Synthesis (MAOS) Method. JKPK (Jurnal Kimia dan Pendidikan Kimia), 4(1). https://doi.org/10.20961/jkpk.v4i1.25790.

Ono, M., Watanabe, R., Kawashima, H., Cheng, Y., Kimura, H., Watanabe, H., Haratake, M., Saji, H., and Nakayama, M., 2009. Fluoro-Pegylated Chalcones as Positron Emission Tomography Probes For In Vivo Imaging of Β-Amyloid Plaques in Alzheimer's Disease. Journal of Medicinal Chemistry, 52(20), 6394‒6401. https://doi.org/10.1021/jm901057p.

Pambudi, W., Haryadi, W., Matsjeh, S., and Indarto, 2019. The Effectiveness of Hydroxychalcone Synthesis by Using NaOH and Naoh+ZrO2 Montmorillonite Catalyst Through Conventional and Microwave Assisted Organic Synthesis (MAOS) Method. Journal of Physics: Conference Series, 1155(1), 012074. https://doi.org/10.1088/1742-6596/1155/1/012074.

Park, S., Kim, E. H., Kim, J., Kim, S. H., and Kim, I., 2018. Biological Evaluation of Indolizine-Chalcone Hybrids as New Anticancer Agents. European Journal of Medicinal Chemistry, 144, 435‒443. https://doi.org/10.1016/j.ejmech.2017.12.056.

Pavia, D. L., Lampman, G. M., Kritz, G. S., and Engel, R. G., 2006. Introduction to Organic Laboratory Techniques (4th Ed.), Thomson Brooks/Cole.

Pingaew, R., Saekee, A., Mandi, P., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S., and Prachayasittikul, V., 2014. Synthesis, Biological Evaluation and Molecular Docking of Novel Chalcone-Coumarin Hybrids as Anticancer and Antimalarial Agents. European Journal of Medicinal Chemistry, 85, 65‒76. https://doi.org/10.1016/j.ejmech.2014.07.087.

Rao, Y. K., Fang, S. H., and Tzeng, Y. M., 2004. Differential Effects of Synthesized 2'-Oxygenated Chalcone Derivatives: Modulation of Human Cell Cycle Phase Distribution. Bioorganic & Medicinal Chemistry, 12(10), 2679‒2686. https://doi.org/10.1016/j.bmc.2004.03.014.

Sang, Z., Song, Q., Cao, Z., Deng, Y., Tan, Z., and Zhang, L., 2021. Design, Synthesis and Evaluation of Novel Dimethylamino Chalcone-O-Alkylamines Derivatives as Potential Multifunctional Agents Against Alzheimer's Disease. European Journal of Medicinal Chemistry, 216, 113310. https://doi.org/10.1016/j.ejmech.2021.113310.

Sastrohamidjojo, H. 2001. Spektroskopi, Edisi 2, Cetakan kedua, 11, 67, 99, Liberty, Yogyakarta.

Sharma, N., and Joshi, Y. C., 2012. Synthesis of Substituted Chalcones Under Solvent–Free Microwave Irradiation Conditions and Their Antimicrobial Evaluation. International Journal of Pharmacy and Pharmaceutical Sciences, 4 (suppl4).

Sivakumar, P. M., Prabhakar, P. K., and Doble, M., 2011. Synthesis, Antioxidant Evaluation, and Quantitative Structure–Activity Relationship Studies of Chalcones. Medicinal Chemistry Research, 20(4), 482‒492. https://doi.org/10.1007/s00044-010-9342-1.

Rashid, H. U., Xu, Y., Ahmad, N., Muhammad, Y., and Wang, L., 2019. Promising Anti-Inflammatory Effects of Chalcones via Inhibition of Cyclooxygenase, Prostaglandin E(2), Inducible NO Synthase and Nuclear Factor κb Activities. Bioorganic Chemistry, 87, 335‒365. https://doi.org/10.1016/j.bioorg.2019.03.033.

Wang, H., and Zeng, J., 2009. Iodine-Catalyzed Efficient Synthesis of Chalcones by Grinding Under Solvent-Free Conditions. Canadian Journal of Chemistry, 87(9), 1209‒1212. https://doi.org/10.1139/V09-106.

Wong, K. T., Osman, H., Parumasivam, T., Supratman, U., Che Omar, M. T., and Azmi, M. N., 2021. Synthesis, Characterization and Biological Evaluation of New 3,5-Disubstituted-Pyrazoline Derivatives as Potential Anti-Mycobacterium tuberculosis H37Ra Compounds. Molecules 26(7). https://doi.org/10.3390/molecules26072081.

Xue, K., Sun, G., Zhang, Y., Chen, X., Zhou, Y., Hou, J., Long, H., Zhang, Z., Lei, M., and Wu, W., 2021. A New Method for the Synthesis of Chalcone Derivatives Promoted by Pph3/I2under Non-Alkaline Conditions. Synthetic Communications, 51(4), 625‒634. https://doi.org/10.1080/00397911.2020.1847295.

Refbacks

  • There are currently no refbacks.