Facile Synthesis of Composite Chitosan and Durio zibethinus Seed and Its Applications as Adsorbent of Metal Ion Ni(II)

Silvia Devi Eka Putri, Sri Mulijani, Komar Sutriah


Nickel is one of the most dangerous heavy metals that impact water ecosystems and human health. In the study, natural and harmless composite materials such as biochar and chitosan were modified to build adsorbent composites and form optimal conditions for the adsorption of nickel heavy metal ions from contaminated wastewater. Biochar was prepared from Durio zibethinus seeds by hydrothermal method to form nanopowder. It was treated with acid, while chitosan was designed as nanopowder by hydrothermal method, also without acid treatment. Composite adsorbents were prepared by mixing biochar and chitosan with a ratio of 4:3 (w/w). Fourier Transform Infrared characterizes composite materials as adsorbents, biochar, and chitosan. The surface morphology of the adsorbent was evaluated by scanning electron microscopy. Furthermore, Langmuir, Freundlich, and Temkin isotherms determine the adsorbent's performance. In addition, batch adsorption experiments were carried out to measure the effect of solution pH, adsorbent dosage, and initial concentration of metal ions. Nickel ion adsorption by the composite adsorbent showed an adsorption capacity of 26.69 mg/g, a maximum removal efficiency of 89.39% at optimum conditions of pH 6, an adsorbent dose of 0.5 g, and a contact time of 200 minutes. This adsorption capacity was better than chitosan and durian seed adsorbents. The nickel ion adsorption process by composite adsorbent shows a pattern in the Temkin isotherm model. In contrast, the chitosan and Durio zibethinus seed adsorbents tended to follow the Langmuir and Freundlich isotherm models. In addition, the adsorption kinetics of the composite material showed pseudo-second-order kinetics, and the reaction was exothermic.


composite adsorbent; adsorption; heavy metal; nickel ion; wastewater.

Full Text:



Abd El Aal, S.A., Abdelhady, A.M., Mansour, N.A., Hassan, N.M., Elbaz, F., and Elmaghraby, E.K., 2019. Physical and Chemical Characteristics of Hematite Nanoparticles Prepared Using Microwave-Assisted Synthesis and Its Application as Adsorbent for Cu, Ni, Co, Cd and Pb from Aqueous Solution. Materials Chemistry and Physics, 235, 121771. https://doi.org/10.1016/j.matchemphys.2019.121771.

Abdelbasir, S.M., El-Shewaikh, A.M., El-Sheikh, S.M., and Ali, O.I., 2021. Novel Modified Chitosan Nanocomposites for Co(II) Ions Removal from Industrial Wastewater. Journal of Water Process Engineering, 41, 102008. https://doi.org/10.1016/j.jwpe.2021.102008.

Abouhussein, D.M.N., El-Bary, A.A., Shalaby, S.H., and El Nabarawi, M.A., 2016. Chitosan Mucoadhesive Buccal Films: Effect of Different Casting Solvents on Their Physicochemical Properties. International Journal of Pharmacy and Pharmaceutical Sciences, 8(9), 206–213. https://doi.org/10.22159/ijpps.2016.v8i9.12999.

Adolfsson, K.H., Yadav, N., and Hakkarainen, M., 2020. Cellulose-Derived Hydrothermally Carbonized Materials and Their Emerging Applications. Current Opinion in Green and Sustainable Chemistry, 23, 18–24. https://doi.org/10.1016/j.cogsc.2020.03.008.

Al-Ghamdi, Y.O., 2022. Immobilization of Cellulose Extracted from Robinia Pseudoacacia Seed Fibers onto Chitosan: Chemical Characterization and Study of Methylene Blue Removal. Arabian Journal of Chemistry, 15(9), 104066. https://doi.org/10.1016/j.arabjc.2022.104066.

Al-Ghouti, M.A., Da'ana, D., Abu-Dieyeh, M., and Khraisheh, M., 2019. Adsorptive Removal of Mercury from Water by Adsorbents Derived from Date Pits. Scientific Reports, 9(1), 1–15. https://doi.org/10.1038/s41598-019-51594-y.

Alkherraz, A.M., Ali, A.K., and Elsherif, K.M., 2020. Removal of Pb (II), Zn (II), Cu (II) and Cd (II) from Aqueous Solutions by Adsorption onto Olive Branches Activated Carbon: Equilibrium and Thermodynamic Studies. J. Chemistry International, 6(1), 11–20. https://doi.org/10.5281/zenodo.2579465.

Anush, S.M., Chandan, H.R., Gayathri, B.H., Asma, Manju, N., Vishalakshi, B., Kalluraya, B., 2020. Graphene Oxide Functionalized Chitosan-Magnetite Nanocomposite for Removal of Cu(II) and Cr(VI) from Waste Water. International Journal of Biological Macromolecules, 164, 4391–4402. https://doi.org/10.1016/j.ijbiomac.2020.09.059.

Basir, I.F., Mahatmanti, F.W., and Haryani, S., 2017. Sintesis Komposit Beads Kitosan/Arang Aktif Tempurung Kelapa Untuk Adsorpsi Ion Cu(II). Indonesian Journal of Chemical Science, 6(2), 181–188.

Boeykens, S.P., Redondo, N., Obeso, R.A., Caracciolo, N., and Vázquez, C., 2019. Chromium and Lead Adsorption by Avocado Seed Biomass Study Through The Use of Total Reflection X-Ray Fluorescence Analysis. Applied Radiation and Isotopes, 153, 108809. https://doi.org/10.1016/j.apradiso.2019.108809.

Chua, J.Y., Pen, K.M., Poi, J.V., Ooi, K.M., and Yee, K.F., 2023. Upcycling of Biomass Waste from Durian Industry for Green and Sustainable Applications: An Analysis Review in The Malaysia Context. Energy Nexus, 10, 100203. https://doi.org/10.1016/j.nexus.2023.100203.

Darban, Z., Shahabuddin, S., Gaur, R., Ahmad, I., and Sridewi, N., 2022. Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels, 8(5), 263. https://doi.org/10.3390/gels8050263.

Doondani, P., Gomase, V., Saravanan, D., and Jugade, R.M., 2022. Chitosan Coated Cotton-Straw-Biochar as an Admirable Adsorbent for Reactive Red Dye. Results in Engineering, 15, 100515. https://doi.org/10.1016/j.rineng.2022.100515.

Dotto, G. L., Rodrigues, F. K., Tanabe, E. H., Fröhlich, R., Bertuol, D. A., Martins, T. R., and Foletto, E. L., 2016. Development of Chitosan/Bentonite Hybrid Composite to Remove Hazardous Anionic and Cationic Dyes from Colored Effluents. Journal of Environmental Chemical Engineering, 4(3), 3230–3239. https://doi.org/10.1016/j.jece.2016.07.004.

Eze, S. I., Abugu, H. O., and Ekowo, L. C., 2021. Thermal and Chemical Pretreatment of Cassia Sieberiana Seed as Biosorbent for Pb2+ Removal from Aqueous Solution. Desalination and Water Treatment, 226, 223–241. https://doi.org/10.5004/dwt.2021.27234.

Gillmore, M. L., Gissi, F., Golding, L. A., Stauber, J. L., Reichelt-Brushett, A. J., Severati, A., Humphrey, C.A., and Jolley, D. F., 2020. Effects of Dissolved Nickel and Nickel-Contaminated Suspended Sediment on The Scleractinian Coral, Acropora Muricata. Marine Pollution Bulletin, 152, 110886. https://doi.org/10.1016/j.marpolbul.2020.110886.

Hammi, N., Chen, S., Dumeignil, F., Royer, S., and El Kadib, A., 2020. Chitosan as a Sustainable Precursor for Nitrogen-Containing Carbon Nanomaterials: Synthesis and Uses. Materials Today Sustainability, 10, 192. https://doi.org/10.1016/j.mtsust.2020.100053.

Heidari, M., Dutta, A., Acharya, B., and Mahmud, S., 2019. A Review of The Current Knowledge and Challenges of Hydrothermal Carbonization for Biomass Conversion. Journal of the Energy Institute, 92(6), 17791799. https://doi.org/10.1016/j.joei.2018.12.003.

Ifijen, I. H., Itua, A. B., Maliki, M., Ize-Iyamu, C. O., Omorogbe, S. O., Aigbodion, A. I., and Ikhuoria, E. U., 2020. The Removal of Nickel and Lead Ions From Aqueous Solutions Using Green Synthesized Silica Microparticles. Heliyon, 6(9), e04907. https://doi.org/10.1016/j.heliyon.2020.e04907.

Janković, B., Manić, N., Dodevski, V., Radović, I., Pijović, M., Katnić, Đ., and Tasić, G., 2019. Physico-Chemical Characterization of Carbonized Apricot Kernel Shell as Precursor for Activated Carbon Preparation in Clean Technology Utilization. Journal of Cleaner Production, 236, 117614. https://doi.org/10.1016/j.jclepro.2019.117614.

Kafle, B.P., 2020. Chapter 6 - Introduction to Nanomaterials and Application of UV–Visible Spectroscopy for Their Characterization. Chemical Analysis and Material Characterization by Spectrophotometry, 2020, 147–198. https://doi.org/10.1016/B978-0-12-814866-2.00006-3.

Kaur, R., Goyal, D., and Agnihotri, S., 2021. Chitosan/PVA Silver Nanocomposite for Butachlor Removal: Fabrication, Characterization, Adsorption Mechanism and Isotherms. Carbohydrate Polymers, 262, 117906. https://doi.org/10.1016/j.carbpol.2021.117906.

Kayalvizhi, K., Alhaji, N. M. I., Saravanakkumar, D., Mohamed, S. B., Kaviyarasu, K., Ayeshamariam, A., Al-Mohaimeed, A.M., AbdelGawwad, M.R., and Elshikh, M. S., 2022. Adsorption of Copper and Nickel by Using Sawdust Chitosan Nanocomposite Beads – A Kinetic and Thermodynamic Study. Environmental Research, 203, 111814. https://doi.org/10.1016/j.envres.2021.111814.

Kulkarni, R. M., Dhanyashree, J. K., Varma, E., and Sirivibha, S. P., 2022. Batch and Continuous Packed Bed Column Studies on Biosorption of Nickel (II) by Sugarcane Bagasse. Results in Chemistry, 4, 100328. https://doi.org/10.1016/j.rechem.2022.100328.

Kristianto, H., Daulay, N., and Arie, A. A., 2019. Adsorption of Ni(II) Ion onto Calcined Eggshells: A Study of Equilibrium Adsorption Isotherm. Indonesian Journal of Chemistry, 19(1), 143. https://doi.org/10.22146/ijc.29200

Lestari, I., Putri, S. D. E. P., Rahayu, M. A., and Gusti, D. R., 2022. Adsorption of Mercury from Aqueous Solution on Durian (Durio zibethinus) Seed Immobilized Alginate. EKSAKTA: Berkala Ilmiah Bidang MIPA, 23(01), 30–41. https://doi.org/10.24036/eksakta/vol23-iss01/305.

Liakos, E. V., Mone, M., Lambropoulou, D. A., Bikiaris, D. N., and Kyzas, G. Z., 2021. Adsorption Evaluation for The Removal of Nickel, Mercury, and Barium Ions From Single-Component and Mixtures of Aqueous Solutions by Using an Optimized Biobased Chitosan Derivative. Polymers 13(2), 1–20. https://doi.org/10.3390/polym13020232.

Liao, J., Huang, H., 2019. Magnetic Chitin Hydrogels Prepared from Hericium Erinaceus Residues with Tunable Characteristics: A Novel Biosorbent for Cu2+ Removal. Carbohydrate Polymers, 220, 191–201. https://doi.org/10.1016/j.carbpol.2019.05.074.

Muaz, A. Z., Faiz, M., Suffian, M. Y., and Hamidi, A. A., 2014. The Study of Flocculant Characteristics for Landfill Leachate Treatment Using Starch Based Flocculant from Durio Zibethinus Seed. Advances in Environmental Biology, 8(15), 129–135.

El Mouhri, G., Merzouki, M., Belhassan, H., Miyah, Y., Amakdouf, H., Elmountassir, R., and Lahrichi, A., 2020. Continuous Adsorption Modeling and Fixed Bed Column Studies: Adsorption of Tannery Wastewater Pollutants Using Beach Sand. Journal of Chemistry, 2020, 7613484. https://doi.org/10.1155/2020/7613484.

Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., and Martins, R., 2019. Synthesis, Design, and Morphology of Metal Oxide Nanostructures. Metal Oxide Nanostructures. http://dx.doi.org/10.1016/B978-0-12-811512-1.00002-3.

Pal, D. B., Singh, A., Jha, J. M., Srivastava, N., Hashem, A., Alakeel, M. A., Abd_Allah, E.F., and Gupta, V. K., 2021. Low-Cost Biochar Adsorbents Prepared from Date and Delonix Regia Seeds for Heavy Metal Sorption. Bioresource Technology, 339, 125606. https://doi.org/10.1016/j.biortech.2021.125606.

Pam, A.A., Elemile, O.O., Musa, D.E., Okere, M.C., Olusegun, A., Ameh, Y.A., 2023. Removal of Cu (II) Via Chitosan-Conjugated Iodate Porous Adsorbent: Kinetics, Thermodynamics, and Exploration of Real Wastewater Sample. Results in Chemistry, 5, 100851. https://doi.org/10.1016/j.rechem.2023.100851 .

Pavithra, S., Thandapani, G., Sugashini, S., Sudha, P. N., Alkhamis, H. H., Alrefaei, A. F., and Almutairi, M. H., 2021. Batch Adsorption Studies on Surface Tailored Chitosan/Orange Peel Hydrogel Composite for The Removal of Cr(VI) and Cu(II) Ions from Synthetic Wastewater. Chemosphere 271, 129415. https://doi.org/10.1016/j.chemosphere.2020.129415.

Payus, C. M., Refdin, M. A., Zahari, N. Z., Rimba, A. B., Geetha, M., Saroj, C., Gasparatos, A., Fukushi, K., and Oliver, P. A., 2019. Durian Husk Wastes as Low-Cost Adsorbent for Physical Pollutants Removal: Groundwater Supply. Materials Today: Proceedings 42, 80–87. https://doi.org/10.1016/j.matpr.2020.10.006.

Pohl, A., 2020. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water, Air, & Soil Pollution, 231(10), 503. https://doi.org/10.1007/s11270-020-04863-w.

Poonam, Bharti, S. K., and Kumar, N., 2018. Kinetic Study of Lead (Pb2+) Removal from Battery Manufacturing Wastewater Using Bagasse Biochar as Biosorbent. Applied Water Science, 8(4), 1–13. https://doi.org/10.1007/s13201-018-0765-z.

Rahaman, M. H., Islam, M. A., Islam, M. M., Rahman, M. A., and Alam, S. N., 2021. Biodegradable Composite Adsorbent of Modified Cellulose and Chitosan to Remove Heavy Metal Ions from Aqueous Solution. Current Research in Green and Sustainable Chemistry, 4, 100119. https://doi.org/10.1016/j.crgsc.2021.100119.

Rahayu, P., and Khabibi, K., 2016. Adsorpsi Ion Logam Nikel ( II ) oleh Kitosan Termodifikasi. Jurnal Kimia Sains dan Aplikasi, 19(1), 21–26. https://doi.org/10.14710/jksa.19.1.21-26.

Reis, E. D. S., Gorza, F. D., Pedro, G. D. C., Maciel, B. G., da Silva, R. J., Ratkovski, G. P., and de Melo, C. P., 2021. (Maghemite/Chitosan/Polypyrrole) Nanocomposites for The Efficient Removal of Cr (VI) from Aqueous Media. Journal of Environmental Chemical Engineering, 9(1), 104893. https://doi.org/10.1016/j.jece.2020.104893.

Shahnaz, T., Sharma, V., Subbiah, S., and Narayanasamy, S., 2020. Multivariate Optimisation of Cr (VI), Co (III) and Cu (II) Adsorption onto Nanobentonite Incorporated Nanocellulose/Chitosan Aerogel Using Response Surface Methodology. Journal of Water Process Engineering, 36, 101283. https://doi.org/10.1016/j.jwpe.2020.101283.

Shehap, A. M., Nasr, R. A., Mahfouz, M. A., and Ismail, A. M., 2021. Preparation and Characterizations of High Doping Chitosan/MMT Nanocomposites Films for Removing Iron From Ground Water. Journal of Environmental Chemical Engineering, 9(1), 104700. https://doi.org/10.1016/j.jece.2020.104700.

Sinyeue, C., Garioud, T., Lemestre, M., Meyer, M., Brégier, F., Chaleix, V., Sol, V., and Lebouvier, N., 2022. Biosorption of Nickel Ions Ni2+ by Natural and Modified Pinus Caribaea Morelet Sawdust. Heliyon, 8(2), e08842. https://doi.org/10.1016/j.heliyon.2022.e08842.

Tandekar, S., Korde, S., and Jugade, R. M., 2021. Red Mud-Chitosan Microspheres for Removal of Coexistent Anions of Environmental Significance from Water Bodies. Carbohydrate Polymer Technologies and Applications, 2, 100128. https://doi.org/10.1016/j.carpta.2021.100128.

Wang, Y., Pan, J., Li, Y., Zhang, P., Li, M., Zheng, H., Zhang, X., Li, H., and Du, Q., 2020. Methylene Blue Adsorption by Activated Carbon, Nickel Alginate/Activated Carbon Aerogel, and Nickel Alginate/Graphene Oxide Aerogel: A Comparison Study. Journal of Materials Research and Technology, 9(6), 12443–12460. https://doi.org/10.1016/j.jmrt.2020.08.084.

Wu, Y., Pang, H., Liu, Y., Wang, X., Yu, S., Fu, D., Chen, J., and Wang, X., 2019. Environmental Remediation of Heavy Metal Ions by Novel-Nanomaterials: A Review. Environmental Pollution, 246, 608–620. https://doi.org/10.1016/j.envpol.2018.12.076.

Zhang, W., Zhang, S., Wang, J., Wang, M., He, Q., Song, J., Wang, H., and Zhou, J., 2018. Hybrid Functionalized Chitosan-Al2O3@SiO2 Composite for Enhanced Cr(VI) Adsorption. Chemosphere, 203, 188–198. https://doi.org/10.1016/j.chemosphere.2018.03.188.

Zhu, F., Zheng, Y. M., Zhang, B. G., and Dai, Y. R., 2021. A Critical Review on The Electrospun Nanofibrous Membranes for The Adsorption of Heavy Metals in Water Treatment. Journal of Hazardous Materials 401, 123608. https://doi.org/10.1016/j.jhazmat.2020.123608.


  • There are currently no refbacks.