Efek Perbedaan Komposisi Komposit Na2FeSiO4/C Berbasis Silika Sekam Padi Terhadap Fasa dan Sifat Listriknya

Agus Riyanto, Sutiarno Sutiarno, Nindya Aisah Indriyani, Wulan Warohmah, Silvi Indah Kusuma Wardani, Syafriadi Syafriadi, Pulung Karo Karo, Sri Wahyu Suciati

Abstract

Salah satu teknik yang digunakan untukmengoptimasi sifat listrik dari Na2FeSiO4 ialah menambahkan grafit (C) sehingga menjadi komposit. Studi ini dilakukan untuk meninjau karakteristik fasa dan sifat listrik dari komposit Na2FeSiO4/C yang komposisinya bervariasi. Preparasi sampel diawali dari penyiapan Na2FeSiO4 dan dilanjutkan dengan pembuatan Na2FeSiO4/C. Na2FeSiO4 dipreparasi dari silika sekam padi, NaOH, Fe(NO3)3.H2O, dan C6H8O7.H2O menggunakan metode sol-gel diikuti dengan proses sinter pada suhu 800 ℃ selama 10 jam. Bahan baku Na2FeSiO4, grafit, dan Carboxy Methyl Cellulose (CMC) dengan variasi perbandingan massa dicampurkan dengan menambahkan n-metilpirrolidin hingga menjadi slurry, kemudian dikeringkan pada suhu 120 ℃ selama 1 jam dan menghasilkan komposit Na2FeSiO4/C. Spektrum FTIR mengindikasikan keberadaan gugus Na‒O, Fe‒O, Si‒O, dan C=C. Difraktogram mendeteksi keberadaan 4 fasa di dalam setiap sampel yaitu Na2FeSiO4, Na2SiO3, SiO2, dan grafit (C). Fasa Na2FeSiO4 memiliki puncak difraksi dengan intensitas tertinggi dibanding dengan fasa yang lainya sehingga terindikasi kuat bahwa fasa tersebut ialah fasa utama. Fasa grafit semakin meningkat seiring dengan meningkatnya komposisi grafit di dalam sampel sebagaimana terkonfirmasi dari naiknya intensitas puncak difraksi dari fasa tersebut, serta ditandai dengan menurunnya nilai transmitansi pada bilangan gelombang yang berkaitan dengan gugus C=C. Meningkatnya fasa grafit dalam Na2FeSiO4/C berpengaruh terhadap nilai penurunanenergi celah pita dan berpengaruh signifikan terhadap peningkatan konduktivitas listrik.

Keywords

band gap; phase; electrical conductivity; Na2FeSiO4/C; rice husk.

Full Text:

PDF

References

Altomare, A., Cuocci, C., and Giacovazzo C., 2008. QUALX: A Computer Program for Qualitative Analysis using Powder Diffraction Data. Journal of Applied Crystallography, 41, 815–817. https://doi.org/10.1107/S0021889808016956.

Begum, H. A., Howlader, R. Md., Siddique, A. B., and Khan, A. N., 2017. Investigation of Functional Properties Changing in Different Chemical Treatments of Various Cellulosic Fibers Using FTIR. Original Research Article Saudi Journal of Engineering and Technology, 2(7), 280–285. https://doi.org/10.21276/sjeat.

Bianchini, F., Fjellvåg, H., and Vajeeston, P., 2017. First-Principles Study of The Structural Stability and Electrochemical Properties of Na2MSiO4 (M = Mn, Fe, Co and Ni) Polymorphs. Physical Chemistry Chemical Physics, 19(22), 14462–14470. https://doi.org/10.1039/c7cp01395g.

Choi, J., Kim, N. R., Lim, K., Ku, K., Yoon, H. J., Kang, J. G., Kang, K., Braun, P. V., Jin, H. J., and Yun, Y. S., 2017. Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries. Small, 3(30), 1–8. https://doi.org/10.1002/smll.201700767.

Chung, D. D. L., 2002. Review: Graphite. Journal of Materials Science, 37(8), 1475–1489. https://doi.org/10.1023/A:1014915307738.

Diekmann, J., Hanisch, C., Froböse, L., Schälicke, G., Loellhoeffel, T., Fölster, A.-S., and Kwade, A., 2017. Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with Focus on Mechanical Processes. Journal of The Electrochemical Society, 164(1), A6184–A6191. http://dx.doi.org/10.1149/2.0271701jes.

Faniyi, I. O., Fasakin, O., Olofinjana, B., Adekunle, A. S., Oluwasusi, T. V., Eleruja, M. A., and Ajayi, E. O. B., 2019. The Comparative Analyses of Reduced Graphene Oxide (RGO) Prepared Via Green, Mild and Chemical approaches. SN Applied Sciences, 1(10), 1–7. https://doi.org/10.1007/s42452-019-1188-7.

Ghaffari, A., and Behzad, M., 2018. Facile Synthesis of Layered Sodium Disilicates as Efficient and Recoverable Nanocatalysts for Biodiesel Production from Rapeseed Oil. Advanced Powder Technology, 29(5), 1265–1271. http://dx.doi.org/10.1016/j.apt.2018.02.019.

Guan, W., Pan, B., Zhou, P., Mi, J., Zhang, D., Xu, J., and Jiang Y., 2017. A High Capacity, Good Safety and Low Cost Na2FeSiO4-based Cathode for Rechargeable Sodium-ion Battery. Applied Materials & Interfaces Metals, 9(27), 22369–22377. https://doi.org/10.1021/acsami.7b02385.

Guo, S. P., Li, J. C., Xu, Q. T., Ma, Z., and Xue, H. G., 2017. Recent Achievements on Polyanion-type Compounds for Sodium-ion Batteries: Syntheses, Crystal Chemistry and Electrochemical Performance. Journal of Power Sources, 361, 285–299. https://doi.org/10.1016/j.jpowsour.2017.07.002.

Jain, R., Luthra, V., Arora, M., and Gokhale, S., 2019. Infrared Spectroscopic Study of Magnetic Behavior of Dysprosium Doped Magnetite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 32(2), 325–333. https://link.springer.com/article/10.1007/s10948-018-4717-5.

Linden, D. and Reddy, T. B. 1995. Handbook of Batteries, Choice Reviews Online. https://doi.org/10.5860/choice.33-2144.

Liu, Y. 2017. The Development History of Cathode and Anode Materials of Lithium Ion Battery. Advances in Computer Science Research, 76, 1399–1402. https://doi.org/10.2991/emim-17.2017.279.

Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R., 2019. How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806.

Ma’ruf, A., Pramudono, B., and Aryanti, N., 2017. Lignin Isolation Process from Rice Husk by Alkaline Hydrogen Peroxide: Lignin and Silica Extracted. AIP Conference Proceedings, 1823(November). https://doi.org/10.1063/1.4978086.

Mahadevan, T. S., and Du, J., 2018. Evaluating Water Reactivity at Silica Surfaces Using Reactive Potentials. Journal of Physical Chemistry C, 122(18), 9875–9885. http://dx.doi.org/10.1021/acs.jpcc.7b12653.

Nytén, A., Abouimrane, A., Armand, M., Gustafsson, T., and Thomas, J. O., 2005. Electrochemical Performance of Li2FeSiO4 as A New Li-battery Cathode Material. Electrochemistry Communications, 7(2), 156–160. https://doi.org/10.1016/j.elecom.2004.11.008.

Palani, S., Jambulingam, R., Mohanam, A., and Srinivasan, G. R., 2020. Synthesis and Characterisation of Carboxymethyl Cellulose Based Bentonite Polymer Blend. International Journal of Recent Technology and Engineering, 8(5), 5661–5664. https://doi.org/10.35940/ijrte.E6772.018520.

Park, M., Zhang, X., Chung, M., Less G. B., and Sastry, A. M., 2010. A Review of Conduction Phenomena in Li-ion Batteries. Journal of Power Sources, 195(24), 7904‒7929. https://doi.org/10.1016/j.jpowsour.2010.06.060.

Rand, and Briand, 2009. Graphite: Structure, Properties, and Manufacture. University of Pretoria.

Rangasamy, V. S., Thayumanasundaram, S., and Locquet, J., 2018. Solvothermal Synthesis and Electrochemical Properties of Na2CoSiO4 and Na2CoSiO4/Carbon Nanotube Cathode Materials for Sodium-ion Batteries. Electrochimica Acta, 276, 102–110. https://doi.org/10.1016/j.electacta.2018.04.166.

Riyanto, A. Suprihatin, Syafriadi, Sembiring, S., Sari, N., Suhesti, E.Y., Rezeki, S.K., and Almusawi, R., 2022. Effect of Thermal Treatment on The Phase Formation And Electrical Properties of Rice Husk Silica Based Na₂Fesio₄ Precursors. Ceramics – Silikaty, 66(1), 95–103. https://doi.org/10.13168/cs.2022.0004.

Riyanto, A., Sembiring, S., Amalia, A. R., Astika, A., and Marjunus, R. 2020., A Preliminary Study of Phases, Elemental Mapping, and Electrical Properties on Na2FeSiO4 Derived from Rice Husk Silica. Journal of Physics: Conference Series, 1572(1). https://doi.org/10.1088/1742-6596/1572/1/012003.

Sheykhan, M., Yahyazadeh, A., and Ramezani, L., 2017. A Novel Cooperative Lewis Acid/BrØnsted Base Catalyst Fe3O4@SiO2-APTMS-Fe(OH)2: An Efficient Catalyst for The Biginelli Reaction. Molecular Catalysis, 435, 166–173. https://doi.org/10.1016/j.mcat.2017.03.032.

Shoukat, T., and Yoo, P. J., 2018. Rheology of Asphalt Binder Modified with 5W30 Viscosity Grade Waste Engine Oil. Applied Sciences (Switzerland), 8(7), 1‒19. https://doi.org/10.3390/app8071194.

Slater, M. D., Kim, D., Lee, E., and Johnson, C. S., 2013. Sodium-ion Batteries. Advancedes Functional Materials, 23(8), 947–958. https://doi.org/10.1002/adfm.201200691.

Wiriya, N., Kanaphan, Y., Hongtong, R., Kaewmala, S., Nash, J., Limphirat, W., Srilomsak, S., Thipthanaratchaphong, N., and Meethong, N., 2021. A Review of Current Rate‐dependent Phase Transformations of Lithium Metal Orthosilicate Cathode Materials for Li‐ion Batteries. Electrochemical Science Advances, 1–17. https://doi.org/10.1002/elsa.202100135.

Xie, F., Xu, Z., Guo, Z., Titirici, and Magdalena, M., 2020. Hard Carbons for Sodium-ion Batteries and Beyond. Progress in Energy, 2(4), 1‒30. https://doi.org/10.1088/2516-1083/aba5f5.

Xu, H., Yan, Q., Yao, W., Lee, C. S., and Tang, Y., 2022. Mainstream Optimization Strategies for Cathode Materials of Sodium‐Ion Batteries. Small Structures, 3(4), 1‒19. https://doi.org/10.1002/sstr.202100217.

Yefremova, S., Zharmenov, A., Sukharnikov, Y., Bunchuk, L., Kablanbekov, A., Anarbekov, K., Kulik, T., Nikolaichuk, A., and Palianytsia, B., 2019. Rice Husk Hydrolytic Lignin Transformation in Carbonization Process. Molecules, 24(17). https://doi.org/10.3390/molecules24173075.

Zhang, P., Hu, C. H., Wu, S. Q., Zhu, Z. Z., and Yang, Y., 2012. Structural Properties and Energetics of Li2FeSiO4 Polymorphs and Their Delithiated Products from First-principles. Physical Chemistry Chemical Physics, 14(20), 7346–7351. https://doi.org/10.1039/c2cp40811b.

Zhu, L., Zeng, Y. R., Wen, J., Li, L., and Cheng, T. M., 2018. Structural and Electrochemical Properties of Na2FeSiO4 Polymorphs for Sodium-Ion Batteries. Electrochimica Acta, 292, 190–198. https://doi.org/10.1016/j.electacta.2018.09.170.

Refbacks

  • There are currently no refbacks.