Kinerja Karbon Aktif Daun Eceng Gondok pada Penurunan Kadar Fosfat Artifisial dan Surfaktan dalam Limbah Detergen

Resa Wulandari, Cucun Alep Riyanto, Yohanes Martono

Abstract

Limbah detergen masuk ke dalam kategori limbah domestik karena limbah ini memiliki potensi membentuk film pada permukaan air dan menurunkan tingkat transfer oksigen ke dalam air. Oleh karena itu, penanganan limbah detergen diperlukan untuk meningkatkan kualitas air. Pada penelitian ini dilakukan sintesis karbon aktif dari Daun Eceng Gondok (DEG) sebagai adsorben fosfat dalam limbah fosfat artifisial dan surfaktan dalam limbah detergen. Tingginya kandungan selulosa dalam daun eceng gondok membuat tanaman tersebut memiliki potensi untuk diolah menjadi bahan dasar alternatif untuk karbon aktif. Sintesis karbon aktif DEG dilakukan melalui proses karbonisasi pada suhu 400 ℃ selama 60 menit dilanjutkan proses aktivasi dengan rasio karbon: H3PO4 30% yaitu 1:4 (b/b). Selanjutnya, pemanasan dilakukan menggunakan furnace pada suhu 600 ℃ selama 60 menit. Hasil penelitian menunjukkan bahwa karbon aktif DEG memiliki gugus fungsional O‒H, C‒H, C=C, C≡C, dan C‒O serta karakter mikropori (d = 1,10 nm) dan luas permukaan sebesar 726,49 m2/g. Pada kajian kinetika dan isoterm adsorpsi, penjerapan karbon aktif DEG terhadap fosfat dan surfaktan mengikuti pemodelan kinetika Elovich dengan kapasitas adsorpsi masing-masing adalah 11,67 mg/g dan 4,19 mg/g. Efektivitas karbon aktif DEG dalam adsorpsi fosfat dan surfaktan berturut-turut mencapai 78,35% dan 52,99%.

Performance of Activated Carbon from Water Hyacinth Leaves (WHL) for Reducing Artificial Phosphate and Surfactant Levels in Detergent Waste. Detergent waste is classified into the domestic waste category because it forms a film on the water surface and reduce the oxygen level in the water. Therefore, handling detergent waste is necessary to improve water quality. In this research, activated carbon was synthesized from water hyacinth leaves (WHL) as an adsorbent for phosphate in artificial phosphate waste and surfactant in detergent waste. The high cellulose content in water hyacinth leaves gives this plant the potential to be processed into an alternative base material for activated carbon. The synthesis of activated carbon from WHL (ACWHL) was carried out through a carbonization process at 400 ℃ for 60 min followed by an activation process using a weight ratio of carbon: H3PO4 30% = 1:4 (w/w) followed by heating at 600 ℃ for 60 min. The research results show that ACWHL has the functional groups O‒H, C‒H, C=C, C≡C, and C‒O as well as microporous character (d = 1.10 nm) and a surface area of 726.49 m2/g. In the study of kinetics and adsorption isotherms, the adsorption of ACWHL on phosphate and surfactants followed Elovich kinetic modeling with adsorption capacities of 11.67 mg/g and 4.19 mg/g, respectively. The effectiveness of ACWHL in adsorption of phosphate and surfactant reached 78.35% and 52.99%, respectively.

Keywords

adsorption; hyacinth leaves; activated carbon; detergent waste; surfactant.

Full Text:

PDF

References

Agustina, S., and Fitrina, A., 2018. Proses Peningkatan Luas Permukaan Karbon Aktif Tongkol Jagung. Prosiding Seminar Rekayasa Teknologi, 440–446.

Aisyah, S., Alimuddin, and Sitorus, S., 2019. Pengaruh Variasi Waktu Pada Kemampuan Adsorpsi Karbon Aktif Dari Limbah Batang Pisang (Musa Paradisiaca L.) Terhadap Benzena. Atomik, 4, 90–95.

Al-Ghouti, M.A., and Da’ana, D.A., 2020. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.

Alvarez, P.J.J., 2012. Nanotechnology for a Safe and Sustainable Water Supply : Enabling Integrated Water Treatment and Reuse XXX. Accounts of Chemical Research, 46, 3, 834–843 https://doi.org/10.1021/ar300029v.

Aman, F., Mariana, M., Mahidin, M., and Maulana, F., 2018. Penyerapan Limbah Cair Amonia Menggunakan Arang Aktif Ampas Kopi. Jurnal Litbang Industri, 8, 47. https://doi.org/10.24960/jli.v8i1.3685.47-52.

Apriyani, N., 2017. Penurunan Kadar Surfaktan dan Sulfat dalam Limbah Laundry. Media Ilmiah Teknik Lingkungan, 2, 37–44. https://doi.org/10.33084/mitl.v2i1.132.

Ayawei, N., Ebelegi, A.N., and Wankasi, D., 2017. Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/3039817.

Badan Standardisasi Nasional, 2005. Sni 06-6989.31-2005 Air Dan Air Limbah - Bagian 31 : Cara Uji Kadar Fosfat Dengan Spektrofotometer Secara Asam Askorbat.

Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L., and Almeida, V.C., 2017. Adsorption of Caffeine on Mesoporous Activated Carbon Fibers Prepared from Pineapple Plant Leaves. Ecotoxicology and Environmental Safety, 147, 64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034.

Demiral, I., and Şamdan, C.A., 2016. Preparation and Characterisation of Activated Carbon From Pumpkin Seed Shell Using H3PO4. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 17, 125–138. https://doi.org/10.18038/btda.64281.

Din, M.I., Naseem, K., Mirza, M.L., and Batool, M., 2018. Evaluation of Saccharum Bengalense as a Non-Conventional Biomaterial for Biosorption of Mn (II) Ions from Aqueous Solutions. Iranian Journal of Chemistry and Chemical Engineering, 37, 179–189.

Ebelegi, A.N., Ayawei, N., and Wankasi, D., 2020. Interpretation of Adsorption Thermodynamics and Kinetics. Open Journal of Physical Chemistry, 10, 166–182. https://doi.org/10.4236/OJPC.2020.103010.

Esterlita, M.O., and Herlina, N., 2015. Pengaruh Penambahan Aktivator ZnCl2, KOH, Dan H3PO4 Dalam Pembuatan Karbon Aktif Dari Pelepah Aren (Arenga Pinnata). Jurnal Teknik Kimia USU, 4, 47–51.

Farouq, R., and Yousef, N.S., 2015. Equilibrium and Kinetics Studies of Adsorption of Copper (II) Ions on Natural Biosorbent. International Journal of Chemical Engineering and Applications, 6, 319–324. https://doi.org/10.7763/ijcea.2015.v6.503.

Fauzi, A.A., Prasetyo, I., Rochmadi, and Ariyanto, T., 2018. Karbon Mesopori Dari Pirolisis Polimer Sintetis Dan Aplikasinya Untuk Penjerapan Gas Rumah Kaca. Jurnal Konversi Universitas Muhammadiyah Jakarta, 7, 19–28.

Fernianti, D., and Suryati, L., 2017. Pengaruh Jenis Detergen Dan Rasio Pengenceran Terhadap Proses Penyerapan Surfaktan Dalam Limbah Detergen Menggunakan Karbon Aktif Dari Ampas Teh. Jurnal Distilasi, 2, 10–14.

Ferreira, A.S., Mota, A.A., Oliveira, A.M., Rodrigues, F.I.L., Pacífico, S.N., Da Silva, J.E., Abagaro, B.T.O., Saraiva, G.D., De Castro, A.J.R., Teixeira, R.N.P., and Sousa Neto, V.O., 2019. Equilibrium and Kinetic Modelling of Adsorption: Evaluating the Performance of Adsorbent in Softening Water for Irrigation and Animal Consumption. Revista Virtual de Quimica, 11, 1752–1766. https://doi.org/10.21577/1984-6835.20190123.

Fitriansyah, A., Amir, H., and Elvinawati, 2021. Karakterisasi Adsorben Karbon Aktif Dari Sabut Pinang (Areca Catechu) Terhadap Kapasitas Adsorpsi Zat Warna Indigosol Blue 04-B. Alotrop, 5, 42–54. https://doi.org/10.33369/atp.v5i1.16485.

González-García, P., Gamboa-González, S., Andrade Martínez, I., and Hernández-Quiroz, T., 2020. Preparation of Activated Carbon from Water Hyacinth Stems by Chemical Activation with K2CO3 and Its Performance as Adsorbent of Sodium Naproxen. Environmental Progress and Sustainable Energy, 39, 1–13. https://doi.org/10.1002/ep.13366.

Hidayah, E.N., and Damayanti, L.K., 2021. Pengaruh Adsorben Komersial Terhadap Penurunan Fosfat Dan Surfaktan Anionik (Detergen) Pada Air Limbah Laundry. EnviroUS, 2, 18–26. https://doi.org/10.33005/envirous.v2i1.54.

Huang, Y., Li, S., Chen, J., Zhang, X., and Chen, Y., 2014. Adsorption of Pb(II) on Mesoporous Activated Carbons Fabricated from Water Hyacinth Using H3PO4 Activation: Adsorption Capacity, Kinetic and Isotherm Studies. Applied Surface Science, 293, 160–168. https://doi.org/10.1016/j.apsusc.2013.12.123.

Kajjumba, G.W., Emik, S., Öngen, A., Kurtulus Özcan, H., and Aydın, S., 2019. Modelling of Adsorption Kinetic Processes—Errors, Theory and Application. Advanced Sorption Process Applications, 1–19. https://doi.org/10.5772/intechopen.80495.

Koyuncu, F., Güzel, F., and Sayğılı, H., 2018. Role of Optimization Parameters in the Production of Nanoporous Carbon from Mandarin Shells by Microwave-Assisted Chemical Activation and Utilization as Dye Adsorbent. Advanced Powder Technology, 29, 2108–2118. https://doi.org/10.1016/j.apt.2018.05.019.

Kuang, Y., Zhang, X., and Zhou, S., 2020. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water, 12, 1–19. https://doi.org/doi:10.3390/w12020587.

Lusiana, U., 2011. Efisiensi Pengolahan Air Limbah Deterjen Menggunakan Sistem Uplow Anaerobic Filter Dengan Aklimatisasi Lumpur Aktif. Biopropal Industri, 2, 13–19. https://doi.org/10.36974/jbi.v2i1.719.

Mahmood, T., Ali, R., Naeem, A., Hamayun, M., and Aslam, M., 2017. Potential of Used Camellia Sinensis Leaves as Precursor for Activated Carbon Preparation by Chemical Activation with H3PO4; Optimization Using Response Surface Methodology. Process Safety and Environmental Protection, 109, 548–563. https://doi.org/10.1016/j.psep.2017.04.024.

Majid, M., Amir, R., Umar, R., and Hengky, H.K., 2017. Efektivitas Penggunaan Karbon Aktif Pada Penurunan Kadar Fosfat Limbah Cair Usaha Laundry Di Kota Parepare Sulawesi Selatan. Prosiding Seminar Nasional IKAKESMADA “Peran Tenaga Kesehatan dalam Pelaksanaan SDGs,” 85–91.

Maryanti, R., Nandiyanto, A.B.D., Manullang, T.I.B., Hufad, A., and Sunardi, 2020. Adsorption of Dye on Carbon Microparticles: Physicochemical Properties during Adsorption, Adsorption Isotherm and Education for Students with Special Needs. Sains Malaysiana, 49, 2977–2988. https://doi.org/10.17576/jsm-2020-4912-09.

Morales, L.S., Baas-López, J.M., Barbosa, R., Pacheco, D., and Escobar, B., 2021. Activated Carbon from Water Hyacinth as Electrocatalyst for Oxygen Eeduction Reaction in an Alkaline Fuel Cell. International Journal of Hydrogen Energy, 46, 25995–26004. https://doi.org/10.1016/j.ijhydene.2021.04.094.

Nibret, G., Ahmad, S., Rao, D.G., Ahmad, I., Shaikh, M.A.M.U., and Rehman, Z.U., 2019. Removal of Methylene Blue Dye from Textile Wastewater Using Water Hyacinth Activated Carbon as Adsorbent: Synthesis, Characterization and Kinetic Studies. SSRN Electronic Journal, 1959–1969. https://doi.org/10.2139/ssrn.3358101.

Pargiman, G.N.R., Arnelli, and Astuti, Y., 2018. Adsorption of HDTMA-Br Surfactant with Concentration Variation by Rice Husk-Based Activated Carbon Produced by Variation of Carbonization Temperature. Jurnal Kimia Sains dan Aplikasi, 4, 171–174. https://doi.org/https://doi.org/10.14710/jksa.21.4.171-174.

Rao, H.J., King, P., and Kumar, Y.P., 2018. Equilibrium Isotherm, Kinetic Modeling, and Characterization Studies of Cadmium Adsorption in an Aqueous Solution by Activated Carbon Prepared from Bauhunua Purpurea Leaves. Rasayan Journal of Chemistry, 11, 1577–1586. https://doi.org/10.31788/RJC.2018.1144024.

Riyanto, C.A., Hidayati, N.A., and Martono, Y., 2023. Reducing Chemical Oxygen Demand and Turbidity Levels in Laundry Waste Using Activated Carbon from Water Hyacinth Leaves. Indonesian Journal of Chemical Analysis (IJCA), 6, 164–175. https://doi.org/10.20885/IJCA.VOL6.ISS2.ART8

Riyanto, C.A., Pattiserlihun, A., Kurniawan, E., Andiani, B.Y., and Perdani, F.P., 2022. Surface Analysis of Activated Carbon from Rice Husk Based on Carbonization and Activation Method. Proceeding of the 1St International Conference on Standardization and Metrology (Iconstam) 2021, 2664, 020005. https://doi.org/10.1063/5.0103325.

Riyanto, C.A., and Prabalaras, E., 2019. The Adsorption Kinetics and Isoterm of Activated Carbon from Water Hyacinth Leaves (Eichhornia Crassipes) on Co(II). Journal of Physics: Conference Series, 1307. https://doi.org/10.1088/1742-6596/1307/1/012002.

Riyanto, C.A., Raharjianti, B.M., and Aminu, N.R., 2021. Studi Kinetika Dan Isoterm Adsorpsi Ion Fe (III) Dan Mn (II) Pada Karbon Aktif Batang Eceng Gondok. Jurnal Riset Teknologi Industri, 15, 44–55. https://doi.org/10.26578/JRTI.V15I1.6633.

Saadi, R., Saadi, Z., Fazaeli, R., and Fard, N.E., 2015. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean Journal of Chemical Engineering, 32, 787–799. https://doi.org/10.1007/s11814-015-0053-7.

Sahara, E., Dahliani, N.K., and Manuaba, I.B.P., 2017. Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes Erecta) dengan Aktivator NaOH. Jurnal Kimia, 174. https://doi.org/10.24843/jchem.2017.v11.i02.p12.

Sailah, I., Mulyaningsih, F., Ismayana, A., Puspaningrum, T., Adnan, A.A., and Indrasti, N.S., 2020. Kinerja Karbon Aktif Dari Kulit Singkong Dalam Menurunkan Konsentrasi Fosfat Pada Air Limbah Laundry Performance of Activated Carbon from Cassava Peel in Reducing Phosphate Concentration in Laundry Liquid Waste. Jurnal Teknologi Industri Pertanian, 30, 180–189.

Seghairi, N., and Abdelmadjid, H., 2021. Possibility of Removing Phosphates from Activated Charbon Made from Date Kernels 06, 817–821. https://doi.org/10.47191/etj/v6i3.03.

Setyawan, M.N., Wardani, S., and Kusumastuti, E., 2018. Arang Kulit Kacang Tanah Teraktivasi H3PO4 sebagai Adsorben Ion Logam Cu(II) dan Diimobilisasi dalam Bata Beton. Indonesian Journal of Chemical Science, 7, 262–269.

Sulastri, S., Nuryono, Kartini, I., and Kunarti, E.S., 2014. Kintetika Dan Keseimbangan Adsorpsi Ion Kromium (III) dalam Larutan pada Senyawa Silika dan Modifikasi Silika Hasil Sintesis dari Abu Sekam Padi. Jurnal Penelitian Saintek, 19(2), 19‒33.

Sumanjit, Rani, S., and Mahajan, R.K., 2016. Equilibrium, Kinetics and Thermodynamic Parameters for Adsorptive Removal of Dye Basic Blue 9 by Ground Nut Shells and Eichhornia. Arabian Journal of Chemistry, 9, S1464–S1477. https://doi.org/10.1016/j.arabjc.2012.03.013.

Tan, K.L., and Hameed, B.H., 2017. Insight Into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, 25–48. https://doi.org/10.1016/j.jtice.2017.01.024.

Tran, H.N., Huang, F.C., Lee, C.K., and Chao, H.P., 2017. Activated Carbon Derived from Spherical Hydrochar Functionalized with Triethylenetetramine: Synthesis, Characterizations, and Adsorption Application. Green Processing and Synthesis, 6, 565–576. https://doi.org/10.1515/gps-2016-0178.

Utomo, A.D., Ridho, M.R., Saleh, E., and Putranto, D.D.A., 2010. Pollution in The Bengawan Solo River Between Solo and Sragen, Central Java. Bawal Widya Riset Perikanan Tangkap, 3, 25–32.

Utomo, W P, Nugraheni, Z. V, Rosyidah, A., Shafwah, O.M., and Naashihah, L.K., 2018. Penurunan Kadar Surfaktan Anionik Dan Fosfat Dalam Air Limbah Laundry Di Kawasan Keputih , Surabaya Menggunakan Karbon Aktif 3, 127–140.

Utomo, Wahyu Prasetyo, Nugraheni, Z.V., Rosyidah, A., Shafwah, O.M., Naashihah, L.K., Nurfitria, N., and Ullfindrayani, I.F., 2018. Penurunan Kadar Surfaktan Anionik Dan Fosfat Dalam Air Limbah Laundry Di Kawasan Keputih, Surabaya Menggunakan Karbon Aktif. Akta Kimia Indonesia, 3, 127. https://doi.org/10.12962/j25493736.v3i1.3528.

Waluyo, L., 2017. Characterization of Heterotrophic Bacteria with Tolerance Against Detergent from Domestic Wastewater in Malang Indonesia for Decomposer Formulas. International Journal of Applied Environmental, 12, 1939–1950.

Wang, J., and Guo, X., 2020a. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. Journal of Hazardous Materials, 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.

Wang, J., and Guo, X., 2020b. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279.

Wang, J., Shen, H., Hu, X., Li, Y., Li, Z., Xu, J., Song, X., Zeng, H., and Yuan, Q., 2016. A Targeted “ Capture ” and “ Removal ” Scavenger toward Multiple Pollutants for Water Remediation Based on Molecular Recognition. Advanced Science, 3(3), 1500289. https://doi.org/10.1002/advs.201500289.

Wang, X., Yuan, S., and Jiang, B., 2019. Wetting Process and Adsorption Mechanism of Surfactant Solutions on Coal Dust Surface. Journal of Chemistry. https://doi.org/10.1155/2019/9085310.

Wardhana, I.W., H, D.S., and R, D.I., 2013. Penggunaan Karbon Aktif dari Sampah Plastik untuk Menurunkan Kandungan Phosphat pada Limbah Cair (Studi Kasus: Limbah Cair Industri Laundry di Tembalang, Semarang). Jurnal Presipitasi, 10, 30–40. https://doi.org/10.14710/presipitasi.v10i1.30-40.

Wijaya, D.R.P., Martono, Y., and Riyanto, C.A., 2018. Synthesis and Characterization of Nano Activated Carbon Tea Waste (Camellia Sinensis L.) Viewed from the Content and Ratio of Orthophosphoric Acid. Indonesian Journal of Chemical Research, 3, 49–58. https://doi.org/10.20885//ijcr.vol3.iss2.art2.

Yakout, S.M., and Sharaf El-Deen, G., 2016. Characterization of Activated Carbon Prepared by Phosphoric Acid Activation of Olive Stones. Arabian Journal of Chemistry, 9, S1155–S1162. https://doi.org/10.1016/j.arabjc.2011.12.002.

Yaneva, Z.L., Koumanova, B.K., and Allen, S.J., 2013. Applicability Comparison of Different Kinetic/Diffusion Models for 4-Nitrophenol Sorption on Rhizopus Oryzae Dead Biomass. Bulgarian Chemical Communications, 45, 161–168.

Yuliani, R.L., Purwanti, E., and Pantiwati, Y., 2015. Effect of Waste Laundry Detergent Industry Against Mortality and Physiology Index of Nile Tilapia (Oreochromis Niloticus). Seminar Nasional XII Pendidikan Biologi FKIP UNS, 822–828.

Yunus, R., Mikrianto, E., Abdurrahman, H., and Jaya, A.K., 2021. Karakteristik Arang Aktif Eceng Gondok (Eichornia Crassipes) Dengan Aktivator H3PO4, ZnCl2, Dan KOH. Prosiding Seminar Nasional Lingkungan Lahan Basah, 6.

Refbacks

  • There are currently no refbacks.