Sintesis Carbon Nanofoam dan Karakteristiknya

Nuryah Muchlisha, Dian Maruto Widjonarko, Teguh Endah Saraswati

Abstract

Karbon memiliki kemampuan untuk membuat jaringan ikatan hibridisasi sp, sp‒sp2, sp2, sp3, dan sp2‒sp3,sehingga karbon terdapat dalam banyak bentuk alotrop seperti grafit, diamond, graphene, nanofiber, nanofoam, dan nanotube. Carbon nanofoam (CNF) terbentuk dari atom karbon yang terikat secara sp2 dan sp3. CNF memiliki struktur sel terbuka yang saling berhubungan, densitas yang sangat rendah, stabilitas termal yang tinggi, dan porositas yang tinggi. CNF dapat diperoleh dengan menggunakan berbagai metode seperti chemical vapor depositon, laser ablsasi, arc-discharge, dan pirolisis. Sintesis dengan berbagai jenis sumber karbon dan keadaan eksperimen menghasilkan material yang memiliki berbagai ukuran, luas permukaan, dan strukturnya. Struktur CNF terdiri dari dua jenis berdasarkan pola tepi strukturnya yaitu zigzag dan armchair. Hasil karakterisasinya menunjukkan bahwa CNF lebih banyak mengandung karbon dengan hibridisasi sp2 dengan struktur yang berinterkoneksi satu sama lain dan memiliki densitas yang sangat rendah. Selain itu, material ini juga memiliki pori dalam ukuran mesopori dan luas permukaan yang tinggi. Sifat unik yang dimiliki oleh CNF berpotensi diaplikasikan dalam berbagai bidang seperti filter, superkapasitor, dan energy storage

Synthesis of Carbon Nanofoam and Its Characteristics. Carbon can create sp, sp‒sp2, sp2, sp3, and sp2‒sp3 hybridized bond networks, which make carbon in many allotropes forms such as graphite, diamond, graphene, nanofiber, nanofoam, and nanotubes. Carbon nanofoam  (CNF) is formed by sp2 and sp3 bonded carbon atoms. CNF has an interconnected open-cell structure, very low density, high thermal stability, and high porosity. CNF is obtained using several methods, such as laser ablation, arc-discharge, chemical vapor deposition, and pyrolysis. Synthesis with various types of carbon sources and experimental conditions resulted in materials having various sizes, surface areas, and structures. The structure of CNF consists of two edge pattern types, including zigzag and armchair. The characterization results show that CNF contains more interconnected carbon with sp2 hybridization and has a very low density. In addition, this material also has pores in the mesoporous size and high surface area. The unique properties of CNF provide potential applications in various fields, such as filters, supercapacitors, and energy storage.

Keywords

carbon nanofoam; synthesis; modification; characterization.

Full Text:

PDF

References

Agrawal, P., Kumar, R., Uppal, H., Singh, N., Kumari, S. and Dhakate, S. 2016. Novel 3D Lightweight Carbon Foam as an Effective Adsorbent for Arsenic (V) Removal from Contaminated Water. RSC Advances, 6 (36), 29899‒29908. https://doi.org/10.1039/C6RA02208A.

Altowyan, A. S., Mostafa, A. M. and Ahmed, H. A. 2021. Effect of Liquid Media and Laser Energy on The Preparation of Ag Nanoparticles and Their Nanocomposites with Au Nanoparticles Via Laser Ablation for Optoelectronic Applications. Optik, 241, 167217. https://doi.org/10.3390/nano11082142.

Bagga, K., Mccann, R., Wang, M., Stalcup, A., Vázquez, M. and Brabazon, D. 2015. Laser Assisted Synthesis of Carbon Nanoparticles with Controlled Viscosities for Printing Applications. Journal of Colloid and Interface Science, 447, 263‒268. https://doi.org/10.1016/j.jcis.2014.10.046.

Baran, D., Yardim, M. F., Atakül, H. and Ekinci, E. 2013. Synthesis of carbon foam with high compressive strength from an asphaltene pitch. New Carbon Materials, 28(2), 127‒132. https://doi.org/10.1016/S1872-5805(13)60071-2.

Bhaduri, B. 2021. Synthesis of Cu Catalyzed Chemical Vapor Deposition Grown Cu-Cnfs on Less Porous Graphite Powder. Materials Letters, 305. https://doi.org/10.1016/j.matlet.2021.130828.

Borand, G., Akçamlı, N. and Uzunsoy, D. 2021. Structural Characterization of Graphene Nanostructures Produced Via Arc Discharge Method. Ceramics International, 47(6), 1‒9. https://doi.org/10.1016/j.ceramint.2020.11.158.

Charitidis, C. A., Georgiou, P., Koklioti, M. A., Trompeta, A.-F. and Markakis, V. 2014. Manufacturing Nanomaterials: from Research to Industry. Manufacturing Review, 1(1), 1‒19. https://doi.org/10.1051/mfreview/2014009.

Chen, S.Z., Zhou, W.X., Yu, J.-F. and Chen, K.Q. 2018. Nanoporous Carbon Foam Structures with Excellent Electronic Properties Predicted by First-Principles Studies. Carbon, 129, 809‒818. https://doi.org/10.1016/j.carbon.2017.12.102.

Cisquella-Serra, A., Magnani, M., Madou, M. and Gamero-Castaño, M. 2022. Conformal CVD of WO3−x on Electrospun Carbon Nanofiber Mats Assisted by Joule Heating. Carbon, 195, 27‒34. https://doi.org/10.1016/j.carbon.2022.04.014.

Elfaham, M., Abdel-Wahab, M. and Mostafa, A. 2020. Effects of Post-Laser Irradiation on the Optical and Structure Properties of Al2O3 Nanoparticles Produced by Laser Ablation. Journal of Applied Physics, 128(15). https://doi.org/10.1063/5.0022554.

Garg, S., Garg, A., Sahu, N. K. and Yadav, A. K. 2019. Synthesis and Characterization of Nanodiamond-Anticancer Drug Conjugates for Tumor Targeting. Diamond and Related Materials, 1(94), 172‒185. https://doi.org/10.1016/j.diamond.2019.03.008.

Goswami, A. D., Trivedi, D. H., Jadhav, N. L. and Pinjari, D. V. 2021. Sustainable and Green Synthesis of Carbon Nanomaterials: A Review. Journal Of Environmental Chemical Engineering, 9(106118), 1‒14. https://doi.org/10.1016/j.jece.2021.106118.

Harris, P. 2018. Transmission Electron Microscopy of Carbon: A Brief History. Journal of Carbon Research, 4(1), 1‒17. https://doi.org/10.3390/c4010004.

Hattori, Y., Shuhara, A., Kondo, A., Utsumi, S., Tanaka, H., Ohba, T., Kanoh, H., Takahashi, K., Vallejos-Burgos, F. and Kaneko, K. 2016. Fabrication of Highly Ultramicroporous Carbon Nanofoams by SF6-Catalyzed Laser-Induced Chemical Vapor Deposition. Chemical Physics Letters, 652, 199‒202. https://doi.org/10.1016/j.cplett.2016.04.050.

Inagaki, M., Qiu, J. and Guo, Q. 2015. Carbon foam: Preparation and Application. Carbon, 1(87), 128‒152. https://doi.org/10.1016/j.carbon.2015.02.021.

Karami, B. and Janghorban, M. 2019. On the Dynamics of Porous Nanotubes with Variable Material Properties and Variable Thickness. International Journal of Engineering Science, 1(136), 53‒66. https://doi.org/10.1016/j.ijengsci.2019.01.002.

Karami, H. 2016. Synthesis of Magnetite/ Hematite/ Iron Nanocomposites by the Low Voltage Arc Discharge in Water in the Presence of External Magnetic Field. International Journal of Electrochemical Science, 11(4), 3074‒3085. https://doi.org/10.20964/110403074.

Kohno, H., Tatsutani, K. and Ichikawa, S. 2012. Carbon Nanofoam Formed by Laser Ablation. Journal of Nanoscience and Nanotechnology, 12(3), 2844‒2848. https://doi.org/10.1166/jnn.2012.5811.

Kordas, K. and Pitkänen, O. 2019. Piezoresistive Carbon Foams in Sensing Applications. Frontiers in Materials, 6(93), 1‒9. https://doi.org/10.3389/fmats.2019.00093.

Kuc, A. and Seifert, G. 2006. Hexagon-Preserving Carbon Foams: Properties of Hypothetical Carbon Allotropes. Physical Review B, 74(214104), 1‒10. https://doi.org/10.1103/PhysRevB.74.214104.

Letellier, M., Szczurek, A., Basso, M.-C., Pizzi, A., Fierro, V., Ferry, O. and Celzard, A. 2017. Preparation and Structural Characterisation of Model Cellular Vitreous Carbon Foams. Carbon, 1(112), 208‒218. https://doi.org/10.1016/j.carbon.2016.11.017.

Li, Z., Xu, J., Sun, D., Lin, T. and Huang, F. 2020. Nanoporous Carbon Foam for Water and Air Purification. ACS Applied Nano Materials, 3(2), 1564‒1570. https://doi.org/10.1021/acsanm.9b02347.

Lin, K., Fang, H., Wen, F., Wang, L., Jiang, W. and Li, J. 2019. Ultra-Strong Nanographite Bulks Based on A Unique Carbon Nanotube Linked Graphite Onions Structure. Carbon, 1(149), 436‒444. https://doi.org/10.1016/j.carbon.2019.04.054.

Lin, Q., Luo, B., Qu, L., Fang, C. and Chen, Z. 2013. Direct Preparation of Carbon Foam by Pyrolysis of Cyanate Ester Resin at Ambient Pressure. Journal of Analytical and Applied Pyrolysis, 1(104), 714‒717. https://doi.org/10.1016/j.jaap.2013.05.007.

Liu, J., Li, X., Zhang, L., Liu, X. and Wang, X. 2022. Direct Fluorination Of Nanographene Molecules With Fluorine Gas. Carbon, 1(188), 453‒460. https://doi.org/10.1016/j.carbon.2021.12.043.

Maffini, A., Orecchia, D., Pazzaglia, A., Zavelani-Rossi, M. and Passoni, M. 2022. Pulsed Laser Deposition of Carbon Nanofoam. Applied Surface Science, 599(153859), 1‒14. https://doi.org/10.1016/j.apsusc.2022.153859.

Manawi, Y. M., Samara, A., Al-Ansari, T. and Atieh, M. A. 2018. A Review of Carbon Nanomaterials’ Synthesis Via the Chemical Vapor Deposition (CVD) Method. Materials, 11(5), 1‒36. https://doi.org/10.3390/ma11050822.

Mitchell, S. T., Frese, N., Gölzhäuser, A., Bowers, A. and Sattler, K. 2015. Ultralight Carbon Nanofoam from Naphtalene-Mediated Hydrothermal Sucrose Carbonization. Carbon, 1(95), 434‒441. https://doi.org/10.1016/j.carbon.2015.08.001.

Mostafa, A. M., Mwafy, E. A., Awwad, N. S. and Ibrahium, H. A. 2021. Synthesis of Multi-Walled Carbon Nanotubes Decorated with Silver Metallic Nanoparticles as A Catalytic Degradable Material Via Pulsed Laser Ablation in Liquid Media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 626. https://doi.org/10.1016/j.colsurfa.2021.126992.

Muñoz, E., Ruiz-González, M. L., Seral-Ascaso, A., Sanjuán, M. L., González-Calbet, J. M., Laguna, M. and De La Fuente, G. F. 2010. Tailored Production of Nanostructured Metal/Carbon Foam by Laser Ablation of Selected Organometallic Precursors. Carbon, 48(6), 1807‒1814. https://doi.org/10.1016/j.carbon.2010.01.025.

Nagel, B., Pusz, S. and Trzebicka, B. 2014. Tailoring the Properties of Macroporous Carbon Foams. Journal of Materials Science, 49, 1‒17. https://doi.org/10.1007/s10853-013-7678-x.

Narasimman, R. and Prabhakaran, K. 2012. Preparation of Low Density Carbon Foams by Foaming Molten Sucrose Using an Aluminium Nitrate Blowing Agent. Carbon, 50(5), 1999‒2009. https://doi.org/10.1016/j.carbon.2011.12.058.

Nyabadza, A., Vázquez, M., Fitzpatrick, B. and Brabazon, D. 2022. Effect of Liquid Medium and Laser Processing Parameters on the Fabrication of Carbon Nanoparticles Via Pulsed Laser Ablation in Liquid Towards Paper Electronics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636(128151), 1‒7. https://doi.org/10.1016/j.colsurfa.2021.128151.

Ola, O., Niu, Q., Chen, Y., Xia, Y. and Zhu, Y. 2019. Carbon Nanotube Reinforced Nanocomposites for Energy Conversion and Storage. Journal of Power Sources, 443. https://doi.org.10.1016/j.jpowsour.2019.227277.

Qi, X., Qin, C., Zhong, W., Au, C., Ye, X. and Du, Y. 2010. Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review Of The Effects Of Synthesis Parameters And Magnetic Properties. Materials Letters, 3(8), 4142‒4174. https://doi.org/10.3390/ma3084142.

Quay, Y.J. and Chung, S.H. 2021. Structural and Surfacial Modification of Carbon Nanofoam As an Interlayer for Electrochemically Stable Lithium-Sulfur Cells. Nanomaterials, 11(3342), 1‒16. https://doi.org/10.3390/nano11123342.

Raiskaya, Е. А., Krivonos, O. I., Babenko, А. V. and Belskaya, O. B. 2021. A Study of the Liquid Pyrolysis Products of A Propane-Butane Mixture As A Precursor In the Synthesis of Cellular Carbon Foam. Journal of Analytical and Applied Pyrolysis, 159. https://doi.org/10.1016/j.jaap.2021.105328.

Ram, B. and Mizuseki, H. 2020. C568: A New Two-Dimensional Sp2‒Sp3 Hybridized Allotrope of Carbon. Carbon, 158, 827‒835. https://doi.org/10.1016/j.carbon.2019.11.062.

Rao, G.-S., Nabipour, H., Zhang, P., Wang, X., Xing, W., Song, L. and Hu, Y. 2020. Lightweight, Hydrophobic and Recyclable Carbon Foam Derived from Lignin–Resorcinol–Glyoxal Resin for Oil and Solvent Spill Capture. Journal of Materials Research and Technology, 9(3), 4655‒4664. https://doi.org/10.1016/j.jmrt.2020.02.092.

Rayskaya, E. A., Belskaya, O. B. and Likholobov, V. A. 2018. Synthesis of Carbon Foam with Cellular Structure by Pyrolysis of Light Alkanes. Materials Today: Proceedings, 5(12), 25962‒25965. https://doi.org.10.1016/j.matpr.2018.08.012.

Rode, A. V., Gamaly, E. G., Christy, A., Gerald, J. F., Hyde, S., Elliman, R., Luther-Davies, B., Veinger, A., Androulakis, J. and Giapintzakis, J. 2004. Unconventional Magnetism in All-Carbon Nanofoam. Physical Review B, 70(054407), 1‒9. https://doi.org/10.1103/PhysRevB.70.054407.

Rode, A. V., Gamaly, E. G., Christy, A. G., Fitz Gerald, J., Hyde, S. T., Elliman, R. G., Luther-Davies, B., Veinger, A. I., Androulakis, J., and Giapintzakis, J. 2005. Strong Paramagnetism and Possible Ferromagnetism in Pure Carbon Nanofoam Produced by Laser Ablation. Journal of Magnetism and Magnetic Materials, 290(291), 298‒301. https://doi.org/10.1016/j.jmmm.2004.11.213.

Rodríguez, E., Diez, M., Antuña-Nieto, C., López-Antón, M. A., García, R. and Martínez-Tarazona, M. R. 2021. An Insight Into the Role of Biomass, Biocompounds And Synthetic Polymers As Additives to Coal for the Synthesis of Carbon Foams. Journal of Analytical Applied Pyrolysis, 160. https://doi.org/10.106/j.jaao.2021.105359.

Sajadi, S. M., Owuor, P., Schara, S., Woellner, C., Rodrigues, V., Vajtai, R., Lou, J., Galvao, D., Tiwary, C. and Ajayan, P. 2017. Multi-scale Geometric Design Principles Applied to 3D Printed Schwarzites. Advanced Materials, 30(1), 1‒8.

Sajadi, S. M., Vásárhelyi, L., Mousavi, R., Rahmati, A. H., Kónya, Z., Kukovecz, Á., Arif, T., Filleter, T., Vajtai, R., Boul, P., Pang, Z., Li, T., Tiwary, C. S., Rahman, M. M. and Ajayan, P. M. 2021. Damage-Tolerant 3D-Printed Ceramics via Conformal Coating. Science Advances, 7(28).

Sari, A. H., Khazali, A. and Parhizgar, S. S. 2018. Synthesis and Characterization Of Long-Cnts by Electrical Arc Discharge in Deionized Water and NaCl Solution. International Nano Letters, 8(3), 19‒23. https://doi.org/10.1007/s40089-018-0227-5.

Saucedo-Jimenez, D., Medina-Sanchez, I. and Couder Castañeda, C. 2018. Carbon Nanofoam by Pulsed Electric Arc-Discharges. Advances in Materials Science and Engineering, 2018, 1‒11. https://doi.org/10.1155/2018/7608543.

Seifert, G., Kuc, A. and Heine, T. 2011. Hexagon Preserving Carbon Nanofoams. Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes, 2010, 57‒77. https://doi.org/10.1007/978-1-4020-9718-8_3.

Seral-Ascaso, A., Garriga, R., Sanjuán, M. L., Razal, J. M., Lahoz, R., Laguna, M., De La Fuente, G. F. and Muñoz, E. 2013. ‘Laser Chemistry’ Synthesis, Physicochemical Properties, and Chemical Processing of Nanostructured Carbon Foams. Nanoscale Research Letters, 8(233), 1‒6. https:/doi.org/10.1186/1556-276x-8-233.

Soni, G., Jain, K., Soni, P., Jangir, R. K. and Vijay, Y. K. 2020. Synthesis of Multiwall Carbon Nanotubes in Presence of Magnetic Field Using Underwater Arc Discharge System. Materials Today: Proceedings, 30, 225‒228. https://doi.org/10.1016/j.matpr.2020.06.256.

Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Heydari Gharahcheshmeh, M., Gleason, K., Choi, Y., Hong, B. and Liu, Z. 2021. Chemical Vapour Deposition. Nature Reviews Methods Primers, 1(5), 1‒20. https://doi.org/10.1038/s43586-020-00005-y.

Umemoto, K., Saito, S., Berber, S. and Tomanek, D. 2001. Carbon Foam: Spanning the Phase Space Between Graphite and Diamond. Physical Review B, 64(19). https://doi.org/10.1103/PhysRevB.64.193409.

Wu, S., Chen, D., Zhao, G., Cheng, Y., Sun, B., Yan, X., Han, W., Chen, G. and Zhang, X. 2022. Controllable Synthesis of A Robust Sucrose-Derived Bio-Carbon Foam with 3D Hierarchical Porous Structure for Thermal Insulation, Flame Retardancy And Oil Absorption. Chemical Engineering Journal, 434. https://doi.org/10.1016/j.cej.2022.134514.

Xiao, N., Zhou, Y., Ling, Z. and Qiu, J. 2013. Synthesis of A Carbon Nanofiber/Carbon Foam Composite from Coal Liquefaction Residue for the Separation of Oil and Water. Carbon, 59, 530‒536. https://doi.org/10.1016/j.carbon.2013.03.051.

Zhang, H., Hu, S., Wang, H., Chen, Y., Wang, H. and Ni, Y. 2019a. Thermal Transport in Three-Dimensional Carbon Honeycombs. Chinese Journal of Physics, 59(1), 567‒571. https://doi.org/10.1016/j.cjph.2019.04.017.

Zhang, T. F., Xia, Q. X., Wan, Z., Yun, J. M., Wang, Q. M. and Kim, K. H. 2019b. Highly Porous Carbon Nanofoams Synthesized from Gas-Phase Plasma for Symmetric Supercapacitors. Chemical Engineering Journal, 360(15), 1310‒1319. https://doi.org/10.1016/j.cej.2018.10.220.

Zhang, Y. and Sun, X. 2007. Synthesis of Carbon Nanofibers and Foam by Catalytic Chemical Vapor Deposition Using a Water‐Soluble Alkali Salt Catalyst. Advanced Materials, 19(7), 961‒964. https://doi.org/10.1002/adma.200602084.

Zhang, Y., Zhang, Q. and Chen, G. 2020. Carbon and Carbon Composites for Thermoelectric Applications. Carbon Energy, 2(3), 408‒436. https://doi.org/10.1002/cey2.68.

Zhou, P. and Chen, Q.L. 2016. Preparation and Characterization of Carbon Foam Derived from Coal Pitch. Journal of Analytical Applied Pyrolysis, 122(1), 370‒376. https://doi.org/10.1016/j.jaap.2016.09.001.

Zhou, Z., Hua, Z., Zhou, Y., Qiao, H., Gurung, A., Naderi, R., Elbohy, H., Smirnova, A., Lu, H., Hua, Z. and Qiao, Q. 2017. Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Scientific Reports, 7(1440), 1‒9. https://doi.org/10.1038/s41598-017-01638-y.

Refbacks

  • There are currently no refbacks.