Pengaruh Metode Sintesis secara Solvo-Hidrotermal dan Elektrokimia terhadap Morfologi Struktur HKUST-1 sebagai Katalis Heterogen dalam Reaksi Esterifikasi Asam Palmitat

Witri Wahyu Lestari, Joni Hartono, Dian Wahyu Tri Wulansari, Enri Pramuja, Fauziyah Azhari, Triana Kusumaningsih

Abstract

Pemilihan metode sintesis akan berpengaruh terhadap karakter material yang dihasilkan yang meliputi kristanilitas, morfologi, luas permukaan, maupun kinerja dalam aplikasinya. Pada penelitian ini telah disintesis HKUST-1 secara solvo-hidrotermal dan elektrokimia dalam pelarut EtOH:H2O (1:1 (v/v)) dan diujicobakan sebagai katalis heterogen dalam esterifikasi asam palmitat. Sintesis secara solvo-hidrotermal, berlangsung dalam autoklaf selama 12 jam pada suhu 120 °C. Sementara itu, sintesis HKUST-1 secara elektrokimia digunakan elektroda tembaga, tegangan sel 15 V selama 90 menit dengan bantuan elektrolit TBATFB pada suhu dan tekanan ambien. Uji katalitik reaksi esterifikasi asam palmitat dilakukan dengan metode refluks selama 2 jam. HKUST-1 hasil sintesis menunjukkan kesesuaian puncak dengan pola difraksi standar CCDC 112954. Hasil refinement menunjukkan HKUST-1 yang diperoleh melalui metode solvo-hidrotermal memiliki kemurnian lebih tinggi. Analisis morfologi menggunakan citra SEM menunjukkan HKUST-1 yang disintesis secara solvo-hidrotermal bergeometri oktahedral sempurna dengan ukuran partikel rata-rata 10,28±1,5 μm, sedangkan HKUST-1 yang disintesis secara elektrokimia berbentuk oktahedral cacat (defect) dengan ukuran partikel rata-rata 4,5±1,6 μm. Analisis termal menunjukkan bahwa HKUST-1 hasil sintesis memiliki stabilitas hingga 300 °C. Uji katalitik dalam reaksi esterifikasi asam palmitat dengan etanol dengan keberadaan katalis HKUST-1 (0,6% berat) menunjukkan peningkatan konversi produk dengan konversi yang paling tinggi ditunjukkan pada HKUST-1 yang disintesis dengan metode elektrokimia (mencapai 43,3%).

Effect of Solvo-Hydrothermal and Electrochemical Synthesis Methods on the Structural Morphology of HKUST-1 as a Heterogeneous Catalyst in Palmitic Acid Esterification Reaction. Selection of synthesis method will influence the materials properties including crystallinity, morphology, surface area, and application performance. In this research HKUST-1 was successfully synthesized under solvo-hydrothermal and electrochemical method, and tested as a heterogeneous catalyst in esterification reactions of palmitic acid. Synthesis under solvo-hydrothermal condition was performed in an autoclave at 120 °C for 12h. In addition, the electrochemical synthesis of HKUST-1 using copper electrodes was performed at 15 V in ambient temperature and pressure, for  90 minutes with TBATFB as an electrolyte. The catalytic test in palmitic acid esterification reaction was carried out by reflux for 2h. The HKUST-1 showed conformity with the standard diffraction pattern CCDC 112954. The refinement results shows that solvothermal product has higher purity. Morphological analysis using SEM imaging showed HKUST-1 obtained from solvo-hydrothermal method possess perfect octahedral geometry with average particle size 10.28±1.58 μm, meanwhile electrochemically-synthesized possess a defect octahedral geometry with average particle size  4.5±1.6 μm. Thermal analysis showed that HKUST-1 is stable up to 300 °C. Catalytic test in esterification reaction of palmitic acid with ethanol in the presence of HKUST-1 as catalyst (0.6% wt) showed an enhanced product conversion with highest conversion was achieved in the presence of electrosyntehsized HKUST-1 (up to 43.3%).

Keywords

electrochemical; esterification; HKUST-1; catalytic; solvothermal.

Full Text:

PDF

References

Abdelmigeed, M.O., Al-Sakkari, E.G., Hefney, M.S., Ismail, F.M., Abdelghany, A., Ahmed, T.S. and Ismail, I.M., 2021. Magnetized ZIF-8 impregnated with sodium hydroxide as a heterogeneous catalyst for high-quality biodiesel production. Renewable Energy, 165, 405-419. https://doi.org/10.1016/j.renene.2020.11.018.

Adhani, L., Aziz, I., Nurbayti, S., and Oktaviana, C.O., 2016. Pembuatan Biodiesel Dengan Cara Adsorpsi dan Transesterifikasi dari Minyak Goreng Bekas. Jurnal Penelitian dan Pengembangan Ilmu Kimia, 2(1),71‒80. https://dx.doi.org/10.15408/jkv.v2i1.3107.

Carmo Jr, A.C., de Souza, L.K., da Costa, C.E., Longo, E., Zamian, J.R. and da Rocha Filho, G.N., 2009. Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel, 88(3), 461-468. https://doi.org/10.1016/j.fuel.2008.10.007.

Chiericatti, C., Basilico, J. C., Basilico, M. L. Z., and Zamaro., 2012. Novel Application of HKUST-1 Metal-Organic Frameworks As Antifungal: Biological Test and Physicochemical Characterization. Microporous and Mesoporous Materials, 162, 60‒63. https://doi.org/10.1016/j.micromeso.2012.06.012.

Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G., and Williams, I. D., 1999. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148‒1150. https://doi.org/10.1126/science.283.5405.1148.

Cui, M., Kang, L., Shi, M., Xie, L., Wang, X., Zhao, Z., Yun, S., and Liang, W., 2017. Explore the Influence of Agglomeration on Electrochemical Performance of an Amorphous Mno2/C Composite by Controlling Drying Process. Applied Surface Science, 416, 241‒247. https://doi.org/10.1016/j.apsusc.2017.04.141.

Dewi, S. K., dan Ediati, R., 2016. Sintesis HKUST-1 (Cu-BTC) secara Solvotermal dengan Penambahan Surfaktan Cetil Trimetilammonium Bromida dan Modulator Asam Asetat. Jurnal Sains Dan Seni ITS, 5, 2337‒3520. http://dx.doi.org/10.12962/j23373520.v5i1.15836.

Dey, S., Reang, N. M, Das, P. K., and Deb, M., 2021. A Comprehensive Study on Prospects of Economy, Environment, and Efficiency of Palm Oil Biodiesel as a Renewable Fuel. Journal of Cleaner Production, 286, 124981. https://doi.org/10.1016/j.jclepro.2020.124981.

Gautam, S., Singhal, J., Lee, H.K., and Chae, K.H., 2022. Drug Delivery of Paracetamol by Metal-Organic Frameworks (HKUST-1): Improvised Synthesis and Investigations. Materials Today Chemistry, 23, 100647. https://doi.org/10.1016/j.mtchem.2021.100647.

Goyal, P., Paruthi, A., Menon, D., Behara, R., Jaiswal, A., Keerthy, V., Kumar, A., Krishnan, V., and Misra, S.K., 2022. Fe Doped Bimetallic HKUST-1 MOF with Enhanced Water Stability for Trapping Pb (II) with High Adsorption Capacity. Chemical Engineering Journal, 430, 133088. https://doi.org/10.1016/j.cej.2021.133088.

Hasan, Z., Jun, J.W. and Jhung, S.H., 2015. Sulfonic acid-functionalized MIL-101 (Cr): An efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chemical Engineering Journal, 278, 265-271. https://doi.org/10.1016/j.cej.2014.09.025.

Hanif, Q.A., Nugraha, R. E., and Lestari, W. W., 2018. Kajian Metal-Organic Frameworks (MOFs) sebagai Material Baru Pengantar Obat. Alchemy Jurnal Penelitian Kimia, 14, 16‒36. https://doi.org/10.20961/alchemy.14.1.8218.16-36.

Hartmann, M., Kunz, S., Himsl, D., and Tangermann, O., 2008. Adsorptive Separation of Isobutene and Isobutane on [Cu3(BTC)2]. Langmuir, 24, 8634‒8642. https://doi.org/10.1021/la8008656.

Joaristi, A. M., Juan-Alchaniz, J., Serra-Crespo, P., Kapteijn, F., and Gascon, J., 2012. Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal-Organic Frameworks. Crystal Growth and Design, 12, 3489‒3498. https://doi.org/10.1021/cg300552w.

Kumar, R. S., Kumar, S. S., and Kulandainathan, M. A., 2013. Efficient Electrosynthesis of Highly Active [Cu3(BTC)2]-MOF and its Catalytic Application to Chemical Reduction. Microporous and Mesoporous Materials, 168, 57‒64. https://doi.org/10.1016/j.micromeso.2012.09.028.

Larasati, I., Winarni, D., Putri, F.R., Hanif, Q.A. and Lestari, W.W., 2017, July. Synthesis of Metal-Organic Frameworks Based on Zr4+ and Benzene 1, 3, 5-Tricarboxylate Linker as Heterogeneous Catalyst in the Esterification Reaction of Palmitic Acid. In IOP Conference Series: Materials Science and Engineering, 214, 012006. https://doi.org/10.1088/1757-899X/214/1/012006.

Lestari, W.W., Adreane, M., Purnawan, C., Fansuri, H., Widiastuti, N., and Rahardjo, S.B., 2016a, Solvothermal and Electrochemical Synthetic Method of HKUST-1 and its Methane Storage Capacity. IOP Conference Series: Materials Science and Engineering, 107(1), 012030. https://doi.org/10.1088/1757-899X/107/1/012030.

Lestari, W. W., Lonneck, P., Streit, H. C., Schleife, F., Wickleder, C., and Hey, H.E., 2014, A Chiral Two-Dimensional Coordination Polymer Based on Cu And (S)-4,4’Bis(4-carboxyphenyl)-2,2’-bis(diphenylphosphinoyl)-1,1’-binaphthyl: Synthesis, Structure, and Magnetic and Optical Properties. Inorganica Chimica Acta, 421, 392‒398. https://doi.org/10.1016/j.ica.2014.06.006.

Lestari, W. W., R. E. Nugraha, I. D. Winarni, M. Adreane, and F. Rahmawati., 2016b, Optimization On Electrochemical Synthesis Of HKUST-1 As Candidate Catalytic Material For Green Diesel Production. AIP Conference Proceedings, 1725. https://doi.org/10.1063/1.4945492.

Lin, K. S., Adhikari, A. K., Ku, C. N., Chiang, C. L dan Kuo, H., 2012, Synthesis and Characterization of Porous HKUST-1 Metal-Organic Frameworks for Hydrogen Storage, International Journal of Hydrogen Energy, 37, 13865-13871. https://doi.org/10.1016/J.IJHYDENE.2012.04.105.

Liu, F., Ma, X., Li, H., Wang, Y., Cui, P., Guo, M., Yaxin, H., Lu, W., Zhou, S. and Yu, M., 2020a, Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel. Fuel, 266, 117149. https://doi.org/10.1016/j.fuel.2020.117149.

Liu, W., Wang, F., Meng, P. and Zang, S.Q., 2020b. Sulfonic Acids Supported on UiO-66 as Heterogeneous Catalysts for the Esterification of Fatty Acids for Biodiesel Production. Catalysts, 10, 1271. https://doi.org/10.3390/catal10111271.

Ma, X., Liu, F., Helian, Y., Li, C., Wu, Z., Li, H., Chu, H., Wang, Y., Wamg, Y., Lu, W., Guo, M., Yu, M., and Zhou, S., 2021, Current Application of MOFs Based Heterogeneous Catalysts in Catalyzing Transesterification/Esterification for Biodiesel Production: A Review. Energy Conversion and Management, 229, 113760. https://doi.org/10.1016/j.enconman.2020.113760.

Maiti, S., Pramanik, A., Manju, U., and Mahanty, S., 2016, Cu3(1,3,5-Benzenetricarboxilate)2 Metal-Organic Framework: A Promising Anode Material for Lithium-Ion Battery. Microporous and Mesoporous Materials, 226, 353‒359. https://doi.org/10.1016/j.micromeso.2016.02.011.

Morales, E.M.C., Méndez-Rojas, M.A., Torres-Martínez, L.M., Garay-Rodríguez, L.F., López, I., Uflyand, I.E., and Kharisov, B.I., 2021, Ultrafast Synthesis of HKUST-1 Nanoparticles by Solvothermal Method: Properties and Possible Applications. Polyhedron, 210, 115517. https://doi.org/10.1016/j.poly.2021.115517.

Mutlu, V.N. and Yilmaz, S., 2016. Esterification of Cetyl Alcohol with Palmitic Acid Over WO3/Zr-SBA-15 and Zr-SBA-15 Catalysts. Applied Catalysis A: General, 522, 194‒200. https://doi.org/10.1016/j.apcata.2016.05.010.

Qu, T., Niu, S., Zhang, X., Han, K., and Lu, C., 2021, Preparation of Calcium Modified Zn-Ce/Al2O3 Heterogeneous Catalyst for Biodiesel Production Through Transesterification of Palm Oil with Methanol Optimized by Response Surface Methodology. Fuel, 284, 118986. https://doi.org/10.1016/j.fuel.2020.118986.

Schlichte, K, Kratzke, T. and Kaskel, S., 2004. Improved Synthesis, Thermal Stability, and Catalytic Properties of the Metal-Organic Framework Compound [Cu3(BTC)2]. Microporous and Mesoporous Materials, 73, 81‒88. https://doi.org/10.1016/j.micromeso.2003.12.027.

Serna, S. L., Tolentino, M. A. O., Nunez, M. L. L., Cruz, A. S., Vargaz, A. G., Sierra, R. C., Beltran, H. I., and Flores, J., 2012. Electrochemical Behavior of [Cu3(BTC)2] Metal Organic Framework: The Effect of the Method of Synthesis. Journal of Alloys and Compound, 540, 113‒120. https://doi.org/10.1016/j.jallcom.2012.06.030.

Shen, T., Liu, T., Mo, H., Yuan, Z., Cui, F., Jin, Y. and Chen, X., 2020. Cu-Based Metal-Organic Framework HKUST-1 as Effective Catalyst for Highly Sensitive Determination of Ascorbic Acid. RSC Advances, 10, 22881‒22890. https://doi.org/10.1039/D0RA01260B.

Stawowy, M., Jagodka, P., Matus, K., Samojeden, B., Albero, J. S., Trawczynski, J., and Lamacz, A., 2020. HKUST-1-Supported Cerium Catalysts for CO Oxidantion. Catalyst, 10, 108. https://doi.org/10.3390/catal10010108.

Wu, L., Li, Y., Fu, Z. and Su, B.L., 2020. Hierarchically structured porous materials: Synthesis strategies and applications in energy storage. National science review, 7(11), 1667-1701. https://doi.org/10.1093/nsr/nwaa183.

Yu, S., Bo, J., Fengli, L., and Jiegang, L., 2017. Structure and Fractal Characteristic of Micro-and Meso-Pores in Low, Middle-Rank Tectonic Deformed Coals by CO2 and N2 Adsorption. Microporous and Mesoporous Materials, 253, 191‒202. https://doi.org/10.1016/j.micromeso.2017.07.009.

Zahan, K.A., and Kano, M., 2018. Biodiesel Production from Palm Oil, Its by-Products, and Mill Effluent: A Review. Energies, 11(8), 2132. https://doi.org/10.3390/en11082132.

Zhao, D., Wan, X., Song, H., Hao, L., Su, Y. and Lv, Y., 2014. Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sensors and Actuators B: Chemical, 197, 50-57. https://doi.org/10.1016/j.snb.2014.02.070.

Zhao, Y., Song, Z., Li, X., Sun, Q., Cheng, N., Lawes, S., and Sun, X., 2016. Metal Organic Frameworks for Energy Storage and Conversion. Energy Storage Materials, 2, 35‒62. https://doi.org/10.1016/j.ensm.2015.11.005.

Refbacks

  • There are currently no refbacks.