Studi In Silico Aktivitas Senyawa Steroid Terhadap Antikanker Payudara Menggunakan Estrogen Alfa (ER-α)

Nurlelasari Nurlelasari, Almas Widyana, Euis Julaeha, Ari Hardianto, Desi Harneti Putri Huspa, Rani Maharani, Tri Mayanti, Darwati Darwati, Muhammad Hanafi, Unang Supratman

Abstract

Kanker payudara merupakan penyebab kedua terbanyak kematian pada wanita akibat kanker setelah kanker paru-paru di seluruh dunia. Steroid merupakan kelompok senyawa aktif yang diantaranya berhasil diisolasi dari genus Chisocheton yang dilaporkan memiliki aktivitas melawan sel kanker payudara MCF-7. Tujuan penelitian ini adalah untuk mengetahui interaksi senyawa steroid terhadap estrogen alfa (ER-α) melalui metode in silico, yaitu penambatan molekul. Pemodelan struktur tiga dimensi (3D) senyawa steroid dilakukan dengan memperhatikan keadaan terprotonasinya pada pH 7,4. Metode in silico divalidasi melalui penambatan ulang struktur kristal ER-α, hingga diperoleh nilai RMSD < 2 Å, dengan program AutoDock 4.2.6. Dengan program yang sama, senyawa-senyawa steroid ditapis dengan metode penambatan molekul. Hasil penapisan menghasilkan nilai energi bebas dari kedua senyawa steroid yaitu -10,08 kkal/mol (7α-hidroksi-β-sitosterol) dan -10,75 kkal/mol (stigmast-5-en-3β-ol), yang nilainya lebih baik dari estradiol (-9,62 kkal/mol), sebagai ligan alami ER-α. Kedua senyawa ini berpotensi untuk menginhibisi estrogen alfa, dimana senyawa stigmast-5-en-3β-ol memiliki potensi yang lebih besar karena nilai energi bebasnya lebih rendah. Hal ini menandakan bahwa modifikasi struktur senyawa mampu mengubah nilai energi ikatan dan interaksi antara ligan dan reseptor.

In Silico Study of Steroid Compound Activity Against Breast Cancer Using Estrogen Alpha (ER-α). Breast cancer is the second worldwide leading cause of cancer death in women after lung cancer. Steroids are a group of active compounds isolated from the Chisocheton genus that has activity against MCF-7 breast cancer cells. This study aimed to determine the interaction activity of steroid compounds against alpha estrogen receptor (ER-α) through in silico method specifically mlecular docking. The modeling of the three-dimensional structure (3D) of steroid compounds was performed by considering their protonation states at pH 7.4. The in silico method was validated by redocking the crystal structure of ER-α until obtaining an RMSD value < 2 Å, using the AutoDock 4.2.6 program. Steroids compounds were screened with the same program namely the molecular docking method. Screening results show that the free energy values of the steroid compounds were -10.08 kcal/mol (7α-hydroxy-β-sitosterol) and -10.75 kcal/mol (stigmast-5-en-3β-ol), which are stronger than estradiol (-9.62 kcal/mol) as native ligand of ER-α. Both of these compounds can inhibit the alpha estrogen receptor, in which the stigmast-5-en-3β-ol compound has a greater potential because of its lower free energy value. This finding indicates that modification of the compound's structure could change the binding energy value and interaction between ligands and receptors.

Keywords

alpha estrogen receptor; breast cancer; molecular docking; steroid.

Full Text:

PDF

References

Biovia and Dassault Systèmes. 2020. Discovery Studio Visualizer, 21.1.0.20298, San Diego: Dassault Systèmes, https://discover.3ds.com/discovery-studio-visualizer-download.

Burley, S.K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G.V., Christie, C.H., Dalenberg, K., Costanzo, L.D., Duarte, J.M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D.S., Ghosh, S., Green, R.K., Guranović, V., Guzenko, D., Hudson, B.P., Lawson, C.L., Liang, Y., Lowe, R., Namkoong, H., Peisach, E., Persikova, I., Randle, C., Rose, A., Rose, Y., Sali, A., Segura, J., Sekharan, M., Shao, C., Tao, Y., Voigt, M., Westbrook, J.D., Young, J.Y., Zardecki, C., and Zhuravleva, M. 2021. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences, Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038.

ChemAxon, (2020). MarvinSketch 18.21.0. https://www.chemaxon.com.

Chen, X., Li, H., Tian, L., Li, Q., Luo, J., and Zhang, Y. 2020. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski's Rule of Five. Journal of Computational Biology, 1–10. https://doi.org/10.1089/cmb.2019.0323.

Chopra S., and Davies, E.L. 2020. Breast cancer. Med (United Kingdom). 48(2), 113-118. https://doi.org/10.1016/j.mpmed.2019.11.009.

Daina, A., Michielin, O., and Zoete, V. 2017. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717.

Fragomeni, S.M., Sciallis, A., and Jeruss, J.S. 2018. Molecular Subtypes and Local-Regional Control of Breast Cancer. Surgical Oncology Clinics. 27(1), 95-120. https://doi.org/10.1016/j.soc.2017.08.005.

Fernando, L.P.S., Sanjeewa K.K.A., Ann Y-S., Ko C., Lee S-H., Lee W.W., and Jeon Y-J. 2018. Apoptotic and Antiproliferative Effects of Stigmast-5-En-3β-Ol from Dendronephthya Gigantea on Human Leukimia HL-60 and Human Breast Cancer MCF-7 Celss. Toxicology in Vitro, 52(2018), 297-305. https://doi.org/10.1016/j.tiv.2018.07.007.

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., and Olson, A. J. 2016. Computational Protein-Ligand Docking and Virtual Drug Screening With The Autodock Suite. Nature Protocols, 11(5), 905-919. https://doi.org/10.1038/nprot.2016.051.

Hakim, A., Widyanti, S., and Alfianto, U. 2018. Hubungan antara Obesitas dengan Reseptor Hormonal (Estrogen reseptor dan Progesteron) dan Ekspresi HER-2/NEU pada Pasien Kanker Payudara Di RS X Surakarta. Biomedika, 10(1), 30-34. https://doi.org/10.23917/biomedika.v10i1.5851.

Hardianto, A., Yusuf, M., Liu, F., and Ranganathan, S. 2019. Structure-Based Drug Design Workflow. Dalam Ranganathan, S., Nakai, K., Scönbach C., and Gribskov, M. Encyclopedia of Bioinformatics and Computational Biology, 3, 273–282. https://doi.org/10.1016/B978-0-12-809633-8.20104-0.

Hardianto, A., Yusuf, M., Hidayat, I. W., Ishmayana, S., and Soedjanaatmadja, U. M. S. 2021. Exploring the Potency of Nigella sativa Seed in Inhibiting SARS-CoV-2 Main Protease Using Molecular Docking and Molecular Dynamics Simulations. Indonesian Journal of Chemistry, 21(5), 1252-1262. https://doi.org/10.22146/ijc.65951.

Katja, D.G., Farabi, K., Nuraini, V.A., Nurlelasari, N., Hidayat, A.T., Mayanti, T., Harneti, D., and Supratman, U. 2016. A new 30-nor Trijugintype Limonoid, Chisotrijugin, from the bark of Chisocheton cumingianus (Meliaceae). International Journal of Chemistry, 8(3), 30-34. https://doi.org/10.5539/ijc.v8n3p30.

Katja, D.G., Mantiri, S.A., Runtuwene, M.R.J., Supratman, U., and Hilmayanti, E. 2021. Senyawa Katekin (Flavonoid) dari Kulit Batang Chisocheton balancae C.DC (Meliaceae). Jurnal Ilmiah Sains, 21(2), 161-165. https://doi.org/10.35799/jis.v21i2.35777.

Lipinski, CA., Lombardo F., Dominy BW., and Feeney PJ. 2012. Experimental and Computational Approaches to Estimate Solubility and Permeability In Drug Discovery And Development Settings. Advanced Drug Delivery Reviews, 46(1-3), 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0.

Mitra, S. and Dash R. 2018. Natural Products for the Management and Prevention of Breast Cancer. Evidence-based Complement Alternative Medicine, 2018, 1-23. https://doi.org/10.1155/2018/8324696.

Nishinarizki, V., Hardianto, A., Gaffar, S., Muchtaridi, M., and Herlina, T. 2022. Virtual Screening Campaigns and ADMET Evaluation to Unlock the Potency Of Flavonoids from Erythrina as 3clpro SARS-COV-2 Inhibitors. Journal of Applied Pharmaceutical Science, 001-011, https://doi.org/10.7324/JAPS.2023.130209.

Niinivehmas, S.P., Manivannan, E., Rauhamäki, S., Huuskonen, J., and Pentikäinen, O.T. 2016. Identification of Estrogen Receptor Α Ligands with Virtual Screening Techniques. Journal of Molecular Graphics and Modelling, 64, 30-39. https://doi.org/10.1016/j.jmgm.2015.12.006.

Paech K, Webb P, Kuiper GG, Nilsson, S., Gustafsson, J., Kushner, P.J., and Scanlan, T.S. 1997. Differential Ligand Activation 0f Estrogen Receptors Eralpha and Erbeta at AP1 Sites. Science, 277(5331):1508-1510. https://doi.org/10.1126/science.277.5331.1508.

Patel, A. R., Hardianto, A., Ranganathan, S., and Liu, F. 2017. Divergent Response of Homologous ATP Sites to Stereospecific Ligand Fluorination for Selectivity Enhancement. Organic & Biomolecular Chemistry, 15(7), 1570–1574. https://doi.org/10.1039/C7OB00129K.

Protein Data Bank (PDB). <https://www.rcsb.org>(diakses pada 11 Agustus 2021).

Raj, R. 2021. Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochemistry and Biophysics Reports, 25, 100847. https://doi.org/10.1016/j.bbrep.2020.100847.

Sari, V.M., Nurlelasari, Harneti, D., Maharani, R., Indrayati, Azmi, M.N., and Supratman, U. 2020. Triterpenoid and Steroid from the Rind of Chisocheton macrophyllus (Meliaceae). Journal of Physics: Conference Series, 1494 (2020), 012025. https://doi.org/10.1088/1742-6596/1494/1/012025.

Sari, S.E., Harahap, W.A., and Saputra, D. 2018. Pengaruh Faktor Risiko Terhadap Ekspresi Reseptor Estrogen Pada Penderita Kanker Payudara Di Kota Padang. Jurnal Kesehatan Andalas, 7, 461-468. https://doi.org/10.25077/jka.v7i4.902.

Seca, A. M. L. and Pinto, D. C. G. A. 2018. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. International Journal of Molecular Science, 19(1), 263. https://doi.org/10.3390/ijms19010263.

Sikumbang, D.A. 2020. Stigmast-5-en-3β-ol dari Ekstrak Kulit Batang Chisocheton lasiocarpus (Meliaceae). Skripsi Sarjana S1 Kimia. Universitas Padjadjaran.

Sulasikin, S. 2020. Senyawa Steroid Baru dari Ekstrak n-Heksana Kulit Batang Chisocheton macrophyllus. Skripsi Sarjana S1 Kimia. Universitas Achmad Yani.

Swiss Institute of Bioinformatics (SIB). SwissADME. <http://www.swissadme.ch/> (diakses pada 11 Agustus 2021).

Tariq, A., Sadia, S., Pan, K., Ullah, I., Mussarat, S., Sun, F., Abiodun, O.O., Batbaatar, A., Li, Z., and Song, D., 2017. A Systematic Review on Ethnomedicines of Anticancer Plants. Phytotherapy Research, 31, 202–264. https://doi.org/10.1002/ptr.5751.

Tasyriq, M., Najmuldeen, I.A., In, L.L.A., Mohamad, K., Awang, K., and Hasima, N. 2012. 7α-Hydroxy-β-Sitosterol from Chisocheton tomentosus Induces Apoptosis via Dysregulation of Cellular Bax/Bcl-2 Ratio and Cell Cycle Arrest by Downregulating ERK1/2 Activation. Hindawi Publishing Corporation, 2012, 1-12. https://doi.org/10.1155%2F2012%2F765316.

Xue, M, Zhang K, Mu K, Xu, J., Yang, H., Liu, Y., Wang, B., Wang, Z., Li, Z., Kong, Q., Li, X., Wang, H., Zhu, J., and Zhuang, T. 2019. Regulation of Estrogen Signaling and Breast Cancer Proliferation by An Ubiquitin Ligase TRIM56. Oncogenesis, 8(30), 1-14. https://doi.org/10.1038/s41389-019-0139-x.

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., and Tang, Y. 2019. Admetsar 2.0: Web-Service For Prediction and Optimization of Chemical ADMET Properties. Bioinformatics, 35, 1067–1069. https://doi.org/10.1093/bioinformatics/bty707.

Yusuf, M., Hardianto, A., Muchtaridi, M., Nuwarda, R. F., and Subroto, T. 2019. Introduction of Docking-Based Virtual Screening Workflow Using Desktop Personal Computer. Encyclopedia of Bioinformatics and Computational Biology, 9(2019), 688-699, https://doi.org/10.1016/B978-0-12-809633-8.20277-X.

Refbacks

  • There are currently no refbacks.