Cairan Ionik sebagai Penyerap Gas CO2
Abstract
Pemanasan global akibat emisi gas rumah kaca, terutama karbon dioksida (CO2), memiliki pengaruh yang signifikan terhadap perubahan iklim dan telah menjadi isu penting dalam beberapa tahun terakhir. Penangkapan dan pemanfaatan CO2 atau CO2capture and utilization (CCU) adalah strategi yang efektif untuk mengurangi pemanasan global. Makalah ini bertujuan untuk memberikan gambaran singkat proses penangkapan CO2 dengan memanfaatkan cairan ionik (ionic liquid, IL). IL adalah jenis garam yang terdiri dari kation organik dan anion organik atau anorganik yang memiliki beberapa keunggulan, di antaranya volatilitas yang rendah, stabilitas termal yang cukup baik, tidak mudah korosif, laju degradasi yang rendah, dan biaya regenerasi yang rendah. Kombinasi kation-anion yang tepat membuat IL dapat digunakan sebagai pelarut untuk proses penangkapan CO2 menggantikan pelarut konvensional berbasis amina. Dalam perkembangan selanjutnya, generasi baru IL fungsional (IL berbasis basa kuat dan asam amino) dan deep eutectic solvent (DES) telah diperkenalkan sebagai larutan pengganti IL murni (IL konvensional) dengan keunggulan kapasitas penyerapan CO2 yang lebih besar, mudah terurai secara alami (biodegradable), mudah berinteraksi dengan jaringan hidup, tidak menimbulkan toksisitas (biokompatibel), dan mudah diproduksi dalam skala besar dengan biaya relatif rendah. Selain itu, dengan mempertimbangkan biokompatibilitas DES, pengembangan DES dengan mempertimbangkan aspek biologis menjadi terobosan baru yang menjanjikan sebagai bahan ramah lingkungan. Dalam hal ini DES menyerap CO2 dari gas buang dan kemudian menyediakannya sebagai sumber nutrisi bagi mikroalga.
Ionic Liquid as CO2 Absorption. An increase in global warming as an impact of greenhouse gases, particularly carbon dioxide (CO2), has become an important issue in recent years. CO2 capture and utilization (CCU) are the effective strategy to mitigate global warming. This study briefly described the CO2 capture process using ionic liquid (IL). IL is a type of salt consisting of organic cations and organic or inorganic anions. IL as a solution in the CO2 capture process has several advantages, including low volatility, good thermal stability, non-corrosive, low degradation, and low regeneration costs. Using the proper cation and anion, IL acts as an effective solvent for CO2 capture, replacing amine. In subsequent developments, a new generation of functional IL (strong base and amino acid-based IL) and deep eutectic solvent (DES) has been introduced as a substitute for pure IL (conventional IL) with the advantages of more excellent CO2 absorption, biodegradable, easy to interact with live tissue, non-toxicity, biocompatible, and easy to produce on a large scale with relatively low cost. In addition, taking into account the biocompatibility of DES, the development of DES by considering the biological aspects is a promising alternative as an environmentally friendly material. In this case, DES absorbs CO2 from exhaust gases and provides it as a source of nutrition for microalgae.
Keywords
Full Text:
PDFReferences
Adeyemi, I., Abu-Zahra, M.R.M., and Alnashef, I., 2017. Novel Green Solvents for CO2 Capture, Energy Procedia, 114, 2552–2560. https://doi.org/10.1016/j.egypro.2017.03.1413.
Aghaie, M., Rezaei, N., and Zendehboudi, S., 2018. A systematic Review on CO2 Capture with Ionic Liquids: Current Status and Future Prospects. Renewable and Sustainable Energy Reviews, 96, 502–525. https://doi.org/10.1016/j.rser.2018.07.004.
Aki, S.N.V.K., Mellein, B.R., Saurer, E.M., and Brennecke, J.F., 2004. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 108, 20355–20365. https://doi.org/10.1021/jp046895+.
Allen, M.R., Dube, O.P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K., 2018. Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia., W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 49–92. https://doi.org/10.1017/9781009157940.003.
Almantariotis, D., Gefflaut, T., Pádua, A.A.H., Coxam, J.Y., and Costa Gomes, M.F., 2010. Effect of Fluorination and Size of the Alkyl Side-Chain on the Solubility of Carbon Dioxide in 1-Alkyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl) Amide Ionic Liquids. Journal of Physical Chemistry B, 114, 3608–3617. https://doi.org/10.1021/jp912176n.
Anggraini, Y., Yusuf, A., Wonorahardjo, S., Kurnia, D., Viridi, S., and Sutjahja, I. M., 2022. Role of C2 Methylation and Anion Type on the Physicochemical and Thermal Properties of Imidazolium-Based Ionic Liquids. Arabian Journal of Chemistry, 15(8), 103963. https://doi.org/10.1016/j.arabjc.2022.103963.
Anheden, M., Yan, J., and de Smedt, G., 2005. Denitrogenation (or Oxyfuel Concepts). Oil and Gas Science and Technology, 60, 485–495. https://doi.org/10.2516/ogst:2005030.
Anthony, J.L., Maginn, E.J., and Brennecke, J.F., 2002. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. Journal of Physical Chemistry B, 106, 7315–7320. https://doi.org/10.1021/jp020631a.
Blanchard, L.A., Hancu, D., Beckman, E.J., and Brennecke, J.F., 1999. Green Processing Using Ionic Liquids and CO2. Nature, 399, 28–29. https://doi.org/10.1038/19887.
Cadena, C., Anthony, J.L., Shah, J.K., Morrow, T.I., Brennecke, J.F., and Maginn, E.J., 2004. Why is CO2 so Soluble in Imidazolium-Based Ionic Liquids?. Journal of the American Chemical Society, 126(16), 5300–5308. https://doi.org/10.1021/ja039615x.
Carroll, J.J., and Mather, A.E., 1992. The System Carbon Dioxide-Water and The Krichevsky-Kasarnovsky Equation. Journal of Solution Chemistry, 21, 607–621. https://doi.org/10.1007/BF00650756.
Cruz, H., Jordão, N., Amorim, P., Dionísio, M., and Branco, L.C., 2018. Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices. ACS Sustainable Chemistry and Engineering, 6, 2240–2249. https://doi.org/10.1021/acssuschemeng.7b03684.
Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R., and Choi, Y.H., 2013. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Analytica Chimica Acta, 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019.
Gao, J., Cao, L., Dong, H., Zhang, X., and Zhang, S., 2015. Ionic Liquids Tailored Amine Aqueous Solution for Pre-Combustion CO2 Capture: Role of Imidazolium-Based Ionic Liquids. Applied Energy, 154, 771–780. https://doi.org/10.1016/J.APENERGY.2015.05.073.
Gelles, T., Lawson, S., Rownaghi, A.A., and Rezaei, F., 2020. Recent Advances in Development of Amine Functionalized Adsorbents for CO2 Capture. Adsorption, 26, 50–50. https://doi.org/10.1007/s10450-019-00151-0.
Ghandi, K., 2014. A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry, 4. https://doi.org/10.4236/gsc.2014.41008.
Gurkan, B.E., de La Fuente, J.C., Mindrup, E.M., Ficke, L.E., Goodrich, B.F., Price, E.A., Schneider, W.F., and Brennecke, J.F., 2010. Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids. Journal of the American Chemical Society, 132, 2116–2117. https://doi.org/10.1021/ja909305t.
He, X., and Hägg, M.B., 2012. Membranes for Environmentally Friendly Energy Processes. Membranes (Basel), 2, 706–726. https://doi.org/10.3390/membranes2040706.
Iijima, G., Kitagawa, T., Katayama, A., Inomata, T., Yamaguchi, H., Suzuki, K., Hirata, K., Hijikata, Y., Ito, M., and Masuda, H., 2018. CO2 Reduction Promoted by Imidazole Supported on a Phosphonium-Type Ionic-Liquid-Modified Au Electrode at a Low Overpotential. ACS Catalysis, 8, 1990–2000. https://doi.org/10.1021/acscatal.7b03274.
Inamuddin, and Asiri, A.M., 2020. Nanotechnology-Based Industrial Applications of Ionic Liquids, Springer Cham, ISBN 978-3-030-44995-7. https://doi.org/10.1007/978-3-030-44995-7.
Jacquemin, J., Husson, P., Padua, A.A.H., and Majer, V., 2006. Density and Viscosity of Several Pure and Water-Saturated Ionic Liquids. Green Chemistry, 8, 172–180. https://doi.org/10.1039/b513231b.
Kirchner, B., 2009. Ionic Liquids from Theoretical Investigations. Topics in Current Chemistry, 290, Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_36.
Kothandaraman, A., 2010. Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study. Thesis, Massachusetts Institute of Technology.
Krupiczka, R., Rotkegel, A., and Ziobrowski, Z., 2015. Comparative Study of CO2 Absorption in Packed Column Using Imidazolium Based Ionic Liquids and MEA Solution. Separation and Purification Technology, 149, 228–236. https://doi.org/10.1016/J.SEPPUR.2015.05.026.
Leung, D.Y.C., Caramanna, G., and Maroto-valer, M.M., 2014. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renewable and Sustainable Energy Reviews, 39, 426–443. https://doi.org/10.1016/j.rser.2014.07.093.
Li, Y., Tao, H., Su, B., Kundzewicz, Z.W., and Jiang, T., 2019. Impacts of 1.5 °C and 2 °C Global Warming on Winter Snow Depth in Central Asia. Science of the Total Environment, 651, 2866–2873. https://doi.org/10.1016/j.scitotenv.2018.10.126.
Lian, S., Song, C., Liu, Q., Duan, E., Ren, H., and Kitamura, Y., 2021. Recent Advances in Ionic Liquids-Based Hybrid Processes for CO2 Capture and Utilization. Journal of Environmental Sciences (China), 99, 281–295. https://doi.org/10.1016/j.jes.2020.06.034.
Liu, Y., Dai, Z., Zhang, Z., Zeng, S., Li, F., Zhang, X., Nie, Y., Zhang, L., Zhang, S., and Ji, X., 2021. Ionic Liquids/Deep Eutectic Solvents for CO2 Capture: Reviewing and Evaluating. Green Energy and Environment, 6, 314–328. https://doi.org/10.1016/j.gee.2020.11.024.
Liu, Y., Han, W., Xu, Z., Fan, W., Peng, W., and Luo, S., 2018. Comparative Toxicity of Pristine Graphene Oxide and Its Carboxyl, Imidazole or Polyethylene Glycol Functionalized Products to Daphnia Magna: A Two Generation Study. Environmental Pollution, 237, 218–227. https://doi.org/10.1016/j.envpol.2018.02.021.
Ma, C., Sarmad, S., Mikkola, J.P., and Ji, X., 2017. Development of Low-Cost Deep Eutectic Solvents for CO2 Capture. Energy Procedia, 142, 3320–3325. https://doi.org/10.1016/j.egypro.2017.12.464.
Maiti, A., 2009. Theoretical Screening of Ionic Liquid Solvents for Carbon Capture. ChemSusChem, 2. https://doi.org/10.1002/cssc.200900086.
Nauclér, T., and Enkvist, P., 2009. Pathways to A Low-Carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost Curve, McKinsey & Company.
Palma Chilla, L.O., Lazzús, J.A., and Pérez Ponce, A.A., 2011. Particle Swarm Modeling Of Vapor-Liquid Equilibrium Data Of Binary Systems Containing CO2 + Imidazolium Ionic Liquids Based On Bis[(Trifluoromethyl)Sulfonyl]Imide Anion. Journal of Engineering Thermophysics, 20, 487–500. https://doi.org/10.1134/S1810232811040126.
Ramdin, M., Amplianitis, A., Bazhenov, S., Volkov, A., Volkov, V., Vlugt, T.J.H., and de Loos, T.W., 2014. Solubility of CO2 and CH4 in ionic liquids: Ideal CO2/CH4 selectivity. Industrial and Engineering Chemistry Research, 53, 15427–15435. https://doi.org/10.1021/ie4042017.
Ramdin, M., de Loos, T.W., and Vlugt, T.J.H., 2012. State-Of-The-Art of CO2 Capture with Ionic Liquids. Industrial and Engineering Chemistry Research, 51, 8149–8177. https://doi.org/10.1021/ie3003705.
Ren, S., Hou, Y., Zhang, K., and Wu, W., 2018. Ionic liquids: Functionalization and Absorption of SO2. Green Energy and Environment, 3, 179–190. https://doi.org/10.1016/j.gee.2017.11.003.
Rochelle, G.T., 2009. Amine Scrubbing for CO2 Capture. Science, 325, 1652–1654. https://doi.org/10.1126/science.1176731.
Sarmad, S., Xie, Y., Mikkola, J.P., and Ji, X., 2016. Screening of Deep Eutectic Solvents (Dess) as Green CO2 Sorbents: from Solubility to Viscosity. New Journal of Chemistry, 41, 290–301. https://doi.org/10.1039/C6NJ03140D.
Shahrom, M., and Wilfred, C.D., 2014. Synthesis and Thermal Properties of Amino Acids Ionic Liquids (AAILS). Journal of Applied Sciences, 14, 1067–1072. https://doi.org/10.3923/jas.2014.1067.1072.
Shiflett, M.B., and Yokozeki, A., 2010. Separation of CO2 and H2S Using Room-Temperature Ionic Liquid [bmim][PF6]. Fluid Phase Equilibria, 294, 105–113. https://doi.org/10.1016/j.fluid.2010.01.013.
Singh, K., 2017. Ionic Liquids: An Emerging Tool for an Improved Organic Synthesis. MOJ Bioorganic & Organic Chemistry, 1, 2016–2017. https://doi.org/10.15406/mojboc.2017.01.00007.
Soares, B. F., Nosov, D. R., Pires, J. M., Tyutyunov, A. A., Lozinskaya, E. I., Antonov, D. Y., Shaplov, A. S., and Marrucho, I. M., 2022. Tunning CO2 Separation Performance of Ionic Liquids through Asymmetric Anions. Molecules, 27(2), 1–23. https://doi.org/10.3390/molecules27020413.
Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J., Li, Y., Song, Y., and Li, H., 2018. Alternative Pathways for Efficient CO2 Capture by Hybrid Processes—A review. Renewable and Sustainable Energy Reviews, 82, 215–231. https://doi.org/10.1016/J.RSER.2017.09.040.
Sun, H., Wang, A., Zhai, J., Huang, J., Wang, Y., Wen, S., Zeng, X., and Su, B., 2018. Impacts of Global Warming of 1.5 °C and 2.0 °C on Precipitation Patterns in China by Regional Climate Model (COSMO-CLM). Atmospheric Research, 203, 83–94. https://doi.org/10.1016/j.atmosres.2017.10.024.
Torralba-Calleja, E., Skinner, J., and Gutiérrez-Tauste, D., 2013. CO2 Capture in Ionic Liquids: A Review of Solubilities and Experimental Methods. Journal of Chemistry, 2013, 473584. https://doi.org/10.1155/2013/473584.
Wan, R., Xia, X., Wang, P., Huo, W., Dong, H., and Chang, Z., 2018. Toxicity of Imidazoles Ionic Liquid [C16mim]Cl To Hepg2 Cells. Toxicology in Vitro, 52, 1–7. https://doi.org/10.1016/j.tiv.2018.05.013.
Weingärtner, H., 2008. Understanding Ionic Liquids at The Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie - International Edition, 47, 654–670. https://doi.org/10.1002/anie.200604951.
Xia, X., Wan, R., Wang, P., Huo, W., Dong, H., and Du, Q., 2018. Toxicity of Imidazoles Ionic Liquid [C16mim]Cl to Hela cells. Ecotoxicology and Environmental Safety, 162, 408–414. https://doi.org/10.1016/j.ecoenv.2018.07.022.
Xu, G., Liang, F., Yang, Y., Hu, Y., Zhang, K., and Liu, W., 2014. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory. Energies, 7, 3484–3502. https://doi.org/10.3390/en7053484.
Yu, C.H., Huang, C.H., and Tan, C.S., 2012. A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research, 12, 745–769. https://doi.org/10.4209/aaqr.2012.05.0132.
Zhang, C., Du, Z., Wang, Jinhua, Wang, Jun, Zhou, T., Li, B., Zhu, L., Li, W., and Hou, K., 2018. Exposed Zebrafish (Danio Rerio) to Imidazolium-Based Ionic Liquids with Different Anions and Alkyl-Chain Lengths. Chemosphere, 203, 381–386. https://doi.org/10.1016/j.chemosphere.2018.03.178.
Zhang, S., Lu, X., Zhou, Q., Li, X., Zhang, X., and Li, S. 2009. Ionic Liquid Physicochemical Properties, Library of Congress Catalogue-in Publication Data, United Kingdom.
Zhang, X., Zhao, Y., Hu, S., Gliege, M.E., Liu, Y., Liu, R., Scudiero, L., Hu, Y., and Ha, S., 2017. Electrochemical Reduction of Carbon Dioxide to Formic Acid in Ionic Liquid [Emim][N(CN)2]/Water System. Electrochimica Acta, 257, 281–287. https://doi.org/10.1016/j.electacta.2017.06.112.
Zhang, Xiangping, Zhang, Xiaochun, Dong, H., Zhao, Z., Zhang, S., and Huang, Y., 2012. Carbon Capture with Ionic Liquids: Overview and Progress. Energy and Environmental Science, 5, 6668–6681. https://doi.org/10.1039/c2ee21152a.
Zhang, Y., Zhang, S., Lu, X., Zhou, Q., Fan, W., and Zhang, X.P., 2009. Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chemistry - A European Journal, 15, 3003–3011. https://doi.org/10.1002/chem.200801184.
Zheng, S., Zeng, S., Li, Y., Bai, L., Bai, Y., Zhang, X., Liang, X., and Zhang, S., 2022. State of the Art of Ionic Liquid-Modified Adsorbents for CO2 Capture and Separation. AIChE Journal, 68. https://doi.org/10.1002/aic.17500.