Karbon dots (C-dots) dari Bahan Hayati untuk Deteksi Logam Berat

Cut Navita Rahmi, Sri Sugiarti, Alvian Dea Yuliani

Abstract

Pendeteksian logam berat pada limbah hasil industri perlu dilakukan untuk mencegah timbulnya penyakit apabila memasuki tubuh manusia. Salah satu bahan yang dapat digunakan untuk pendeteksian logam berat yaitu C-dots. C-dots yang berasal dari bahan hayati akan menghasilkan gugus fungsi yang dapat meningkatkan karakteristik optik C-dots agar lebih selektif dalam pendeteksian logam berat. Selain itu, penggunaan bahan hayati sebagai sumber C-dots akan memanfaatkan limbah sehingga mengurangi sampah. Penelitian ini bertujuan untuk mengkaji nanopartikel karbon C-dots yang berasal dari sumber hayati sebagai pendeteksian logam berat. C-dots yang berasal dari sumber hayati sudah banyak diteliti sebagai deteksi logam berat secara selektif. Gugus fungsi pada permukaan C-dots akan menentukan interaksi spesifik antara C-dots dan masing-masing logam. Reaksi pengompleksan antara C-dots dengan ion logam cenderung mengikuti aturan sebagai berikut, ion logam yang keras akan cenderung mengikat ligan yang keras dan ion logam lunak cenderung mengikat lebih banyak ligan yang lunak. C-dots tersintesis dengan metode hidrotermal cenderung menghasilkan quantum yield dan intensitas fluoresensi yang lebih tinggi yang sensitif untuk deteksi logam berat.

Carbon Dots (C-Dots) from Biomass for Heavy Metal Detection. Detecting heavy metals in industrial waste is necessary to prevent the disease from entering the human body. One of the materials that can be used to detect heavy metals is carbon dots (C-dots). C-dots derived from biological materials have functional groups that can improve their optical characteristics to be more selective in detecting heavy metals. In addition, using natural materials as a source of C-dots will utilize waste, thereby reducing waste. This study aims to review carbon nanoparticles derived from natural sources for detecting heavy metals. C-dots derived from biological sources have been widely studied as selective heavy metal detection. The functional groups on the surface of the C-dots will determine the specific interactions between the C-dots and each metal. The complex reaction between C-dots and metal ions tends to follow the rules: hard metal ions tend to bind to hard ligands, and soft metal ions tend to bind more to soft ligands. C-dots synthesized via the hydrothermal method tend to produce a higher quantum yield and fluorescence intensity that are sensitive to heavy metal detection. ️

Keywords

biomass; C-dots; detection; heavy metal ion.

Full Text:

PDF

References

Aji, M.P., Sholikhah, L., Silmi, F.I., Permatasari, H.A., Rahmawati, I., Priyanto, A., and Nuryadin, B.W., 2020. Carbon Dots from Dragonfruit Peels as Growth-Enhancer on Ipomoea Aquatica Vegetable Cultivation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 11, 035005. https://doi.org/10.1088/2043-6254/ab9d15.

Atchudan, R., Edison, T.N.J.I., Perumal, S., Muthuchamy, N., and Lee, Y.R., 2020a. Hydrophilic Nitrogen-Doped Carbon Dots from Biowaste Using Dwarf Banana Peel for Environmental and Biological Applications. Fuel, 275, 117821. https://doi.org/10.1016/j.fuel.2020.117821.

Atchudan, R., Edison, T.N.J.I., Perumal, S., Muthuchamy, N., and Lee, Y.R., 2020b. Eco-Friendly Synthesis of Tunable Fluorescent Carbon Nanodots from Malus Floribunda for Sensors and Multicolor Bioimaging. Journal of Photochemistry and Photobiology A: Chemistry, 390. https://doi.org/10.1016/j.jphotochem.2019.112336.

Baker, S.N., and Baker, G.A., 2010. Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie - International Edition, 49, 6726–6744. https://doi.org/10.1002/anie.200906623.

Bandi, R., Dadigala, R., Gangapuram, B.R., and Guttena, V., 2018. Green Synthesis of Highly Fluorescent Nitrogen – Doped Carbon Dots from Lantana Camara Berries for Effective Detection of Lead(II) and Bioimaging. Journal of Photochemistry and Photobiology B: Biology, 178, 330–338. https://doi.org/10.1016/j.jphotobiol.2017.11.010.

Bandi, R., Gangapuram, B.R., Dadigala, R., Eslavath, R., Singh, S.S., and Guttena, V., 2016. Facile and Green Synthesis of Fluorescent Carbon Dots from Onion Waste and Their Potential Applications as Sensor and Multicolour Imaging Agents. RSC Advances, 6, 28633–28639. https://doi.org/10.1039/c6ra01669c.

Başoğlu, A., Ocak, Ü., and Gümrükçüoğlu, A., 2020. Synthesis of Microwave-Assisted Fluorescence Carbon Quantum Dots Using Roasted–Chickpeas and Its Applications for Sensitive and Selective Detection of Fe3+ Ions. Journal of Fluorescence, 30, 515–526. https://doi.org/10.1007/s10895-019-02428-7.

Bhamore, J.R., Jha, S., Singhal, R.K., Park, T.J., and Kailasa, S.K., 2018. Facile Green Synthesis of Carbon Dots from Pyrus Pyrifolia Fruit for Assaying of Al3+ Ion via Chelation Enhanced Fluorescence Mechanism. Journal of Molecular Liquids, 264, 9–16. https://doi.org/10.1016/j.molliq.2018.05.041.

Bhatt, S., Bhatt, M., Kumar, A., Vyas, G., Gajaria, T., and Paul, P., 2018. Green Route for Synthesis of Multifunctional Fluorescent Carbon Dots from Tulsi Leaves and Its Application as Cr(VI) Sensors, Bio-Imaging and Patterning Agents. Colloids and Surfaces B: Biointerfaces, 167, 126–133. https://doi.org/10.1016/j.colsurfb.2018.04.008.

Cammack, R., and Hughes, M.N., 2007. Considerations for the Specification of Enzyme Assays Involving Metal Ions Enzyme Assays Involving Metal Ions. Escec, 93–108.

Carvalho, J., Santos, L.R., Germino, J.C., Terezo, A.J., Moreto, J.A., Quites, F.J., and Freitas, R.G., 2019. Hydrothermal Synthesis to Water-Stable Luminescent Carbon Dots from Acerola Fruit for Photoluminescent Composites Preparation and Its Application as Sensors. Materials Research, 22. https://doi.org/10.1590/1980-5373-MR-2018-0920.

Das, R., Bandyopadhyay, R., and Pramanik, P., 2018. Carbon Quantum Dots from Natural Resource: A Review. Materials Today Chemistry, 8, 96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.

Desai, M.L., Jha, S., Basu, H., Singhal, R.K., Park, T.J., and Kailasa, S.K., 2019. Acid Oxidation of Muskmelon Fruit for the Fabrication of Carbon Dots with Specific Emission Colors for Recognition of Hg2+ Ions and Cell Imaging. ACS Omega, 4, 19332–19340. https://doi.org/10.1021/acsomega.9b02730.

Edison, T.N.J.I., Atchudan, R., Shim, J.J., Kalimuthu, S., Ahn, B.C., and Lee, Y.R., 2016. Turn-off Fluorescence Sensor for the Detection of Ferric Ion in Water Using Green Synthesized N-Doped Carbon Dots and Its Bio-Imaging. Journal of Photochemistry and Photobiology B: Biology, 158, 235–242. https://doi.org/10.1016/j.jphotobiol.2016.03.010.

Frackowiak, D., 1988. The Jablonski Diagram. Journal of Photochemistry and Photobiology, B: Biology. 2 (1988), 399-408. https://doi.org/10.1016/1011-1344(88)85060-7.

Gan, Y.X., Jayatissa, A.H., Yu, Z., Chen, X., and Li, M., 2020. Hydrothermal Synthesis of Nanomaterials. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/8917013.

Gao, X., Du, C., Zhuang, Z., and Chen, W., 2016. Carbon Quantum Dot-Based Nanoprobes for Metal Ion Detection. Journal of Materials Chemistry C, 4, 6927–6945. https://doi.org/10.1039/C6TC02055K.

Gayen, B., Palchoudhury, S., and Chowdhury, J., 2019. Carbon Dots: A Mystic Star in the World of Nanoscience. Journal of Nanomaterials, 1. https://doi.org/10.1155/2019/3451307.

Gu, D., Hong, L., Zhang, L., Liu, H., and Shang, S., 2018. Nitrogen and Sulfur Co-Doped Highly Luminescent Carbon Dots for Sensitive Detection of Cd (II) Ions and Living Cell Imaging Applications. Journal of Photochemistry and Photobiology B: Biology, 186, 144–151. https://doi.org/10.1016/j.jphotobiol.2018.07.012.

Gu, D., Shang, S., Yu, Q., and Shen, J., 2016. Green Synthesis of Nitrogen-Doped Carbon Dots from Lotus Root for Hg(II) Ions Detection and Cell Imaging. Applied Surface Science, 390, 38–42. https://doi.org/10.1016/j.apsusc.2016.08.012.

Gupta, D.A., Desai, M.L., Malek, N.I., and Kailasa, S.K., 2020. Fluorescence Detection of Fe3+ Ion Using Ultra-Small Fluorescent Carbon Dots Derived from Pineapple (Ananas Comosus): Development of Miniaturized Analytical Method. Journal of Molecular Structure, 1216, 1–8. https://doi.org/10.1016/j.molstruc.2020.128343.

Hepriyadi, S.U., and Isnaeni, 2018. Synthesis and Optical Characterization of Carbon Dot from Peels of Dragon Fruit and Pear. Omega: Jurnal Fisika dan Pendidikan Fisika, 4, 19. https://doi.org/10.31758/omegajphysphyseduc.v4i1.19.

Hernawati, Setiawan, N.A., Shintawati, R., and Priyandoko, D., 2018. The Role of Red Dragon Fruit Peel (Hylocereus Polyrhizus) to Improvement Blood Lipid Levels of Hyperlipidaemia Male Mice. Journal of Physics: Conference Series, 1013. https://doi.org/10.1088/1742-6596/1013/1/012167.

Hu, C., Yu, C., Li, M., Wang, X., Yang, J., Zhao, Z., Eychmüller, A., Sun, Y.P., and Qiu, J., 2014. Chemically Tailoring Coal to Fluorescent Carbon Dots with Tuned Size and Their Capacity for Cu(II) Detection. Small, 10, 4926–4933. https://doi.org/10.1002/smll.201401328.

Iravani, S., and Varma, R.S., 2020. Green Synthesis, Biomedical and Biotechnological Applications of Carbon and Graphene Quantum Dots. A Review. Environmental Chemistry Letters, 18, 703–727. https://doi.org/10.1007/s10311-020-00984-0.

Istarani, F., and Pandebesie, E.S. 2014. Studi Dampak Arsen ( As ) Dan Kadmium ( Cd ). Jurnal Teknik POMITS, 3, 1–6.

Jahdaly, B.A. Al, Elsadek, M.F., Ahmed, B.M., Farahat, M.F., Taher, M.M., and Khalil, A.M., 2021. Outstanding Graphene Quantum Dots from Carbon Source for Biomedical and Corrosion Inhibition Applications: A Review. Sustainability (Switzerland), 13, 1–33. https://doi.org/10.3390/su13042127.

Jelinek, R. 2017. Carbon Quantum Dots. Synthesis, Properties and Applicatons, 1st ed. Springer International Publishing.

Kala, D., Jolly, C.M., and Athiramol, P.S., 2016. Green Fluorescent Carbon Dots: A Novel Drug Targeting and Cell Imaging Agent. International Journal of Pharmaceutical Sciences and Research, 7, 3163. https://doi.org/10.13040/IJPSR.0975-8232.7(8).3163-72.

Kasmiarno, L.D., Fikarda, A., Sambudi, N.S., and Gunawan, R.K., 2021. Carbon Quantum Dots (CQds) from Rambutan and Pandan Leaves for Cu2+ Detection. Waste Technology, 9, 1–10.

Kumawat, M.K., Thakur, M., Gurung, R.B., and Srivastava, R., 2017. Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Scientific Reports, 7, 1–16. https://doi.org/10.1038/s41598-017-16025-w.

Li, H., Kang, Z., Liu, Y., and Lee, S.T., 2012. Carbon Nanodots: Synthesis, Properties and Applications. Journal of Materials Chemistry, 22, 24230–24253. https://doi.org/10.1039/c2jm34690g.

Li, P., and Li, S.F.Y., 2021. Recent Advances in Fluorescence Probes Based on Carbon Dots for Sensing and Speciation of Heavy Metals. Nanophotonics, 10, 877–908. https://doi.org/10.1515/nanoph-2020-0507

Liao, J., Cheng, Z., and Zhou, L., 2016. Nitrogen-Doping Enhanced Fluorescent Carbon Dots: Green Synthesis and Their Applications for Bioimaging and Label-Free Detection of Au3+ Ions. ACS Sustainable Chemistry and Engineering, 4, 3053–3061. https://doi.org/10.1021/acssuschemeng.6b00018.

Liaotrakoon, W., 2013. Characterization of Dragon fruit (Hylocereus spp.) Components with Valorization Potential. Ghent(BE): Ghent University.

Lin, X., Xiong, M., Zhang, J., He, C., Ma, X., Lin, X., Xiong, M., Zhang, J., He, C., Ma, X., Zhang, H., and Kuang, Y., 2020. Carbon Dots Based on Natural Resources : Synthesis and Applications in Sensors. Microchemical Journal, 105604. https://doi.org/10.1016/j.microc.2020.105604.

Liu, H., Zhang, Y., Liu, J.H., Hou, P., Zhou, J., and Huang, C.Z., 2017a. Preparation of Nitrogen-Doped Carbon Dots with High Quantum Yield from: Bombyx Mori Silk for Fe(III) Ions Detection. RSC Advances, 7, 50584–50590. https://doi.org/10.1039/c7ra10130a.

Liu, M.L., Chen, B. Bin, Li, C.M., and Huang, C.Z., 2019. Carbon Dots: Synthesis, Formation Mechanism, Fluorescence Origin and Sensing Applications. Green Chemistry, 21, 449–471. https://doi.org/10.1039/c8gc02736f.

Liu, W., Diao, H., Chang, H., Wang, H., Li, T., and Wei, W., 2017b. Green Synthesis of Carbon Dots from Rose-Heart Radish and Application for Fe3+ Detection and Cell Imaging. Sensors and Actuators, B: Chemical, 241, 190–198. https://doi.org/10.1016/j.snb.2016.10.068.

Murugan, N., and Sundramoorthy, A.K., 2018. Green Synthesis of Fluorescent Carbon Dots from Borassus Flabellifer Flowers for Label-Free Highly Selective and Sensitive Detection of Fe3+ Ions. New Journal of Chemistry, 42, 13297–13307. https://doi.org/10.1039/c8nj01894d.

Prasannan, A., and Imae, T., 2013. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Industrial and Engineering Chemistry Research, 52, 15673–15678. https://doi.org/10.1021/ie402421s.

Qi, H., Teng, M., Liu, M., Liu, S., Li, J., Yu, H., Teng, C., Huang, Z., Liu, H., Shao, Q., Umar, A., Ding, T., Gao, Q., and Guo, Z., 2019. Biomass-Derived Nitrogen-Doped Carbon Quantum Dots: Highly Selective Fluorescent Probe for Detecting Fe3+ Ions and Tetracyclines. Journal of Colloid and Interface Science, 539, 332–341. https://doi.org/10.1016/j.jcis.2018.12.047.

Qu, S., Wang, X., Lu, Q., Liu, X., and Wang, L., 2012. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. Angewandte Chemie - International Edition, 51, 12215–12218. https://doi.org/10.1002/anie.201206791.

Raji, K., Ramanan, V., and Ramamurthy, P., 2019. Facile and Green Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots from Jackfruit Seeds and Its Applications towards the Fluorimetric Detection of Au3+ Ions in Aqueous Medium and in: In Vitro Multicolor Cell Imaging. New Journal of Chemistry, 43, 11710–11719. https://doi.org/10.1039/c9nj02590a.

Ramezani, Z., Qorbanpour, M., and Rahbar, N., 2018. Green Synthesis of Carbon Quantum Dots Using Quince Fruit (Cydonia Oblonga) Powder as Carbon Precursor: Application in Cell Imaging and As3+ Determination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 549, 58–66. https://doi.org/10.1016/j.colsurfa.2018.04.006.

Sharma, A., and Das, J., 2019. Small Molecules Derived Carbon Dots: Synthesis and Applications in Sensing, Catalysis, Imaging, and Biomedicine. Journal of Nanobiotechnology, 17, 1–24. https://doi.org/10.1186/s12951-019-0525-8.

Shen, J., Shang, S., Chen, X., Wang, D., and Cai, Y., 2017. Facile Synthesis of Fluorescence Carbon Dots from Sweet Potato for Fe3+ Sensing and Cell Imaging. Materials Science and Engineering C, 76, 856–864. https://doi.org/10.1016/j.msec.2017.03.178.

Singh, I., Arora, R., Dhiman, H., and Pahwa, R., 2018. Carbon Quantum Dots: Synthesis, Characterization and Biomedical Applications. Turkish Journal of Pharmaceutical Sciences, 15, 219–230. .https://doi.org/10.4274/tjps.63497.

Srinivasan, K., Subramanian, K., Murugan, K., and Dinakaran, K., 2016. Sensitive Fluorescence Detection of Mercury(II) in Aqueous Solution by the Fluorescence Quenching Effect of MoS2 with DNA Functionalized Carbon Dots. Analyst, 141, 6344–6352. https://doi.org/10.1039/c6an00879h.

Tadesse, A., Hagos, M., Ramadevi, D., Basavaiah, K., and Belachew, N., 2020. Fluorescent-Nitrogen-Doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury(II) Ion Sensing, and Live Cell Imaging. ACS Omega, 5, 3889–3898. https://doi.org/10.1021/acsomega.9b03175.

Tyagi, A., Tripathi, K.M., Singh, N., Choudhary, S., and Gupta, R.K., 2016. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Advances, 6, 72423–72432. https://doi.org/10.1039/c6ra10488f.

Vandarkuzhali, S.A.A., Jeyalakshmi, V., Sivaraman, G., Singaravadivel, S., Krishnamurthy, K.R., and Viswanathan, B., 2017. Highly Fluorescent Carbon Dots from Pseudo-Stem of Banana Plant: Applications as Nanosensor and Bio-Imaging Agents. Sensors and Actuators, B: Chemical, 252, 894–900. https://doi.org/10.1016/j.snb.2017.06.088.

Wang, M., Wan, Y., Zhang, K., Fu, Q., Wang, L., Zeng, J., Xia, Z., and Gao, D., 2019. Green Synthesis of Carbon Dots Using the Flowers of Osmanthus Fragrans (Thunb.) Lour. as Precursors: Application in Fe3+ and Ascorbic Acid Determination and Cell Imaging. Analytical and Bioanalytical Chemistry,. https://doi.org/10.1007/s00216-019-01712-6.

Xie, Y., Cheng, D., Liu, X., and Han, A., 2019. Green Hydrothermal Synthesis of N-Doped Carbon Dots from Biomass Highland Barley for the Detection of Hg2+. Sensors (Switzerland), 19. https://doi.org/10.3390/s19143169.

Yang, R., Guo, X., Jia, L., Zhang, Y., Zhao, Z., and Lonshakov, F., 2017. Green Preparation of Carbon Dots with Mangosteen Pulp for the Selective Detection of Fe3+ Ions and Cell Imaging. Applied Surface Science, 423, 426–432. https://doi.org/10.1016/j.apsusc.2017.05.252.

Zhang, W., Jia, L., Guo, X., Yang, R., Zhang, Y., and Zhao, Z., 2019a. Green Synthesis of Up- and down-Conversion Photoluminescent Carbon Dots from Coffee Beans for Fe3+ Detection and Cell Imaging. Analyst, 144, 7421–7431. https://doi.org/10.1039/c9an01953g.

Zhang, X., Jiang, M., Niu, N., Chen, Z., Liu, S., and Li, J., 2017. Review of Natural Productderived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 11, 11–24. https://doi.org/10.1002/cssc.201701847.

Zhang, Y., Xiao, J., Zhuo, P., Yin, H., Fan, Y., Liu, X., and Chen, Z., 2019b. Carbon Dots Exhibiting Concentration-Dependent Full-Visible-Spectrum Emission for Light-Emitting Diode Applications. ACS Applied Materials and Interfaces, 11, 46054–46061. https://doi.org/10.1021/acsami.9b14472.

Zhao, J., Huang, M., Zhang, L., Zou, M., Chen, D., Huang, Y., and Zhao, S., 2017. Unique Approach to Develop Carbon Dot-Based Nanohybrid Near-Infrared Ratiometric Fluorescent Sensor for the Detection of Mercury Ions. Analytical Chemistry, 89, 8044–8049. https://doi.org/10.1021/acs.analchem.7b01443.

Zhao, W.B., Liu, K.K., Song, S.Y., Zhou, R., and Shan, C.X., 2019. Fluorescent Nano-Biomass Dots: Ultrasonic-Assisted Extraction and Their Application as Nanoprobe for Fe3+ Detection. Nanoscale Research Letters, 14. https://doi.org/10.1186/s11671-019-2950-x.

Zhu, C., Zhai, J., and Dong, S., 2012. Bifunctional Fluorescent Carbon Nanodots: Green Synthesis via Soy Milk and Application as Metal-Free Electrocatalysts for Oxygen Reduction. Chemical Communications, 48, 9367–9369. https://doi.org/10.1039/c2cc33844k.

Zulfajri, M., Gedda, G., Chang, C.J., Chang, Y.P. and Huang, G.G., 2019. Cranberry Beans Derived Carbon Dots as a Potential Fluorescence Sensor for Selective Detection of Fe3+ Ions in Aqueous Solution. ACS Omega, 4, 15382–15392. https://doi.org/10.1021/acsomega.9b01333.

Refbacks

  • There are currently no refbacks.