Pembuatan dan Karakterisasi Nanopartikel Perak Menggunakan Ekstrak Buah Mangrove Rhizophora stylosa

Nancy Willian, Hilfi Pardi, Syukri Arief

Abstract

Nanopartikel perak menampilkan sifat fisik dan biologis yang unik yang telah menarik minat penelitian karena aplikasi yang menjanjikan. Pada penelitian ini, proses fabrikasi nanopartikel perak(AgNPs) dilakukan dengan metode green sintesis menggunakan tanaman mangrove dengan pelarut air. Ekstrak buah mangrove Rhizophora stylosa (RS) pertama kali digunakan sebagai reduktor dan stabilizer dalam sintesis AgNPs. Karakteristik AgNPs ditentukan dengan spektrofotometer UV-Vis, FTIR, XRD dan TEM. Analisis spektrum UV-vis menunjukkan panjang gelombang pada 430 ‒ 445 nm. Studi FTIR mengungkapkan adanya senyawa fitokimia aktif yang bertindak sebagai zat penutup dan penstabil nanopartikel. TEM menunjukkan morfologi AgNPs yang ditemukan berbentuk bola dengan ukuran diamter sekitar 10 ‒ 60 nm. Pola XRD menunjukkan bahwa semua sampel AgNPs yang diperoleh memiliki struktur face-center cubic (fcc) yang menegaskan bahwa nanopartikel bersifat padatan kristalin dengan ukuran kristal 38 ‒ 77 nm. Studi ini membuktikan kemampuan biomaterial dalam sintesis AgNPs dengan mengadopsi prinsip sintesis hijau.

Fabrication and Characterization of Silver Nanoparticles Using Extract of Mangrove Fruit of Rhizophora stylosa. Silver nanoparticles display unique physical and biological properties that have attracted research interest because of their promising applications. In this research, silver nanoparticle (AgNPs)  fabrication process was carried out via green synthesis methods using mangrove plants and water as a solvent. Mangrove fruit extract Rhizophora stylosa (RS) was first used as a reducing agent and stabilizer in the synthesis of AgNPs. The characteristics of AgNPs were characterized using UV-Vis, FTIR, XRD, and TEM spectrophotometers. UV-vis spectrum analysis showed a peak at 430 ‒ 445 nm. FT-IR studies revealed the presence of active phytochemical compounds which act as coating agents and stabilizers for nanoparticles. TEM showed that the morphology of AgNPs was spherical with a diameter size of 10 ‒ 60 nm. The XRD patterns showed that all of the AgNPs sample obtained had a face-center cubic (fcc) structure, indicating that the nanoparticles are crystalline solids with a crystallite size of 38 ‒ 77 nm. This study proves the ability of biomaterials in the synthesis of silver nanoparticles by adopting the principle of green synthesis.

Keywords

characterization; mangrove; silver nanoparticles; Rhizophora stylosa.

Full Text:

PDF

References

Afreen, A., Ahmed, R., Mehboob, S., Tariq, M., Alghamdi, H.A., Zahid, A.A., Ali, I., Malik, K., and Hasan, A., 2020. Phytochemical-Assisted Biosynthesis of Silver Nanoparticles from Ajuga Bracteosa for Biomedical Applications. Materials Research Express, 7. https://doi.org/10.1088/2053-1591/aba5d0.

Ahmad, T., and Khan, W. 2013. Size Variation of Gold Nanoparticles Synthesized Using Tannic Acid in Response to Higher Chloroauric Acid Concentrations. World Journal of Nano Science and Engineering, 3(3): 62–68. http://dx.doi.org/10.4236/wjnse.2013.33009.

Al Hindawi, A.M., Joudah, I., Hamzah, S., and Tarek, Z., 2019. Plant Extract: Safe Way for Fabrication Silver Nanoparticles. IOP Conference Series: Materials Science and Engineering, 571. https://doi.org/10.1088/1757-899X/571/1/012069.

Johnson, M., Santhanam, A., Thangaiah, S., and Narayanan, J., 2018. Green Synthesis of Silver Nanoparticles Using Cyathea Nilgirensis Holttum and Their Cytotoxic and Phytotoxic Potentials. Particulate Science and Technology, 36, 578–582. https://doi.org/10.1080/02726351.2016.1278292.

Bakshi, M., Ghosh, S., and Chaudhuri, P., 2015. Green Synthesis , Characterization and Antimicrobial Potential of Sliver Nanoparticles Using Three Mangrove Plants from Indian Sundarban. https://doi.org/10.1007/s12668-015-0175-8.

Balakrishnan, S., Srinivasan, M., and Mohanraj, J., 2014. Biosynthesis of Silver Nanoparticles from Mangrove Plant (Avicennia Marina) Extract and Their Potential Mosquito Larvicidal Property. Journal of Parasitic Diseases, 40, 991–996. https://doi.org/10.1007/s12639-014-0621-5.

Bandaranayake, W.M., 1998. Traditional and Medicinal Uses of Mangroves. Mangroves and Salt Marshes, 2, 133–148. http://dx.doi.org/10.1023%2FA%3A1009988607044.

Bazmandeh, A.Z., Rezaei, A., Reza, H., Jafarbigloo, G., Javar, M.A., Hassanzadeh, A., Amirian, A., Niakan, M.H., Nave, H.H., and Mehrabi, M., 2020. Green Synthesis and Characterization of Biocompatible Silver Nanoparticles Using Stachys Lavandulifolia Vahl. Extract and Their Antimicrobial Performance Study, 8, 284–290.

Das, D., Haydar, M.S., and Mandal, P., 2020. Impact of Physical Attributes on Proficient Phytosynthesis of Silver Nanoparticles Using Extract of Fresh Mulberry Leaves: Characterization, Stability and Bioactivity Assessment. Journal of Inorganic and Organometallic Polymers and Materials,. https://doi.org/10.1007/s10904-020-01794-1.

Das, S.K., Behera, S., Patra, J.K., and Thatoi, H., 2019. Green Synthesis of Sliver Nanoparticles Using Avicennia Officinalis and Xylocarpus Granatum Extracts and In Vitro Evaluation of Antioxidant, Antidiabetic and Anti-Inflammatory Activities. Journal of Cluster Science, 30, 1103–1113. https://doi.org/10.1007/s10876-019-01571-2.

Farhadi, S., Ajerloo, B., and Mohammadi, A., 2017. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta Chimica Slovenica, 129–143. https://doi.org/10.17344/acsi.2016.2956.

Gouda, S., Das, G., Sen, S.K., Thatoi, P., and Patra, J.K., 2015. Mangroves, a Potential Source for Green Nanoparticle Synthesis: A Review. Indian Journal of Geo-Marine Sciences, 44, 635–645.

Grandiflora, T., Activity, I.A., Pal, P., Gupta, N., and Jain, S., 2019. Preparation , Characterization and Evaluation of Silver Nanoparticles Of 9, 229–235.

Isaac, R.S.R., Sakthivel, G., and Murthy, C., 2013. Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa Bilimbi Fruit Extract. Journal of Nanotechnology, 2013. https://doi.org/10.1155/2013/906592.

Jayapriya, M., Dhanasekaran, D., Arulmozhi, M., Nandhakumar, E., Senthilkumar, N., and Sureshkumar, K., 2019. Green Synthesis of Silver Nanoparticles Using Piper Longum Catkin Extract Irradiated by Sunlight: Antibacterial and Catalytic Activity. Research on Chemical Intermediates. https://doi.org/10.1007/s11164-019-03812-5.

Kumar, S.D., Singaravelu, G., Ajithkumar, S., Murugan, K., Nicoletti, M., and Benelli, G., 2017. Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential. Journal of Cluster Science, 28, 359–367. https://doi.org/10.1007/s10876-016-1100-1.

Li, D.L., Li, X.M., Peng, Z.Y., and Wang, B.G., 2007. Flavanol Derivatives from Rhizophora Stylosa and Their DPPH Radical Scavenging Activity. Molecules, 12, 1163–1169. https://doi.org/10.3390/12051163.

Makarov, V. V., Love, A.J., Sinitsyna, O. V., Makarova, S.S., Yaminsky, I. V., Taliansky, M.E., and Kalinina, N.O., 2014. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae, 6, 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44.

Mariychuk, R., Porubská, J., Ostafin, M., Čaplovičová, M., and Eliašová, A., 2020. Green Synthesis of Stable Nanocolloids of Monodisperse Silver and Gold Nanoparticles Using Natural Polyphenols from Fruits of Sambucus Nigra L. Applied Nanoscience (Switzerland),. https://doi.org/10.1007/s13204-020-01324-y.

Mustapha, T., Misni, N., Ithnin, N.R., Daskum, A.M., and Unyah, N.Z., 2022. A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. International Journal of Environmental Research and Public Health, 19. https://doi.org/10.3390/ijerph19020674.

Naidu, K.S.B., Murugan, N., Adam, J.K., and Sershen, 2019a. Biogenic Synthesis of Silver Nanoparticles from Avicennia Marina Seed Extract and Its Antibacterial Potential. BioNanoScience, 9, 266–273. https://doi.org/10.1007/s12668-019-00612-4.

Naidu, K.S.B., Murugan, N., and Sershen, 2019b. Physico-Chemical and Antibacterial Properties of Gold Nanoparticles Synthesized Using Avicennia Marina Seeds Extract. Transactions of the Royal Society of South Africa, 0098. https://doi.org/10.1080/0035919X.2019.1666321.

Nie, Z., Jian, K., Zhong, C., Wang, L., and Yang, Y., 2007. Enhanced Radical Scavenging Activity by Antioxidant-Functionalized Gold Nanoparticles : A Novel Inspiration for Development of New Artificial Antioxidants 43, 1243–1254. https://doi.org/10.1016/j.freeradbiomed.2007.06.011.

Pinho, B., and Torrente-murciano, L., 2019. Reaction Chemistry & Engineering Size and Shape Evaluation †. https://doi.org/10.1039/c9re00452a.

Quester, K., Avalos-borja, M., and Castro-longoria, E., 2016. Controllable Biosynthesis of Small Silver Nanoparticles Using Fungal Extract. Journal of Nanomaterials and Biotechnology, 7, 118–125. http://dx.doi.org/10.4236/jbnb.2016.72013.

Rajeshkumar, S., and Bharath, L. V., 2017. Mechanism of Plant-Mediated Synthesis of Silver Nanoparticles – A Review on Biomolecules Involved, Characterisation and Antibacterial Activity. Chemico-Biological Interactions, 273, 219–227. https://doi.org/10.1016/j.cbi.2017.06.019.

Ramalingam, V., and Rajaram, R., 2018. Enhanced Antimicrobial, Antioxidant and Anticancer Activity of Rhizophora Apiculata: An Experimental Report. 3 Biotech, 8. https://doi.org/10.1007/s13205-018-1222-2

Salari, S., Esmaeilzadeh, S., and Samzadeh-kermani, A., 2019. In-Vitro Evaluation of Antioxidant and Antibacterial Potential of Green Synthesized Silver Nanoparticles Using Prosopis Farcta Fruit Extract. Iranian Journal of Pharmaceutical Research, 18, 430–445.

Samanta, S., Agarwal, S., Nair, K.K., Harris, R.A., and Swart, H., 2019. Biomolecular Assisted Synthesis and Mechanism of Silver and Gold Nanoparticles. Materials Research Express, 6. https://doi.org/10.1088/2053-1591/ab296b.

Suárez-cerda, J., Alonso-nuñez, G., Espinoza-gómez, H., and Flores-lópez, L.Z., 2015. Synthesis, Kinetics and Photocatalytic Study of “Ultra-Small” Ag-NPs Obtained by a Green Chemistry Method Using an Extract of Rosa ’Andeli’ Double Delight Petals. Journal Of Colloidal and Interface Science,. https://doi.org/10.1016/j.jcis.2015.07.049.

Takara, K., Kuniyoshi, A., Wada, K., Kinjyo, K., and Iwasaki, H., 2008. Antioxidative Flavan-3-Ol Glycosides from Stems of Rhizophora Stylosa. Bioscience, Biotechnology, and Biochemistry, 72, 2191–2194. https://doi.org/10.1271/bbb.80065.

Willian, N., Syukri, S., Zulhadjri, Z., and Arief, S., 2021. Marine Plant Mediated Green Synthesis of Silver Nanoparticles Using Mangrove Rhizophora Stylosa: Effect of Variable Process and Their Antibacterial Activity. F1000Research, 10, 768. https://doi.org/10.12688/f1000research.54661.1.

Willian, N., Syukri, Zulhadjri, Labanni, A., and Arief, S., 2020. Bio-Friendly Synthesis of Silver Nanoparticles Using Mangrove Rhizophora Stylosa Leaf Aqueous Extract and Its Antibacterial and Antioxidant Activity. Rasayan Journal of Chemistry, 13, 1478–1485. https://doi.org/10.31788/RJC.2020.1335760.

Refbacks

  • There are currently no refbacks.