Analisis Profil HPLC-PDA Berkombinasi dengan LC-ESI-MS dan Aktivitas Biologi dari Ekstrak Jamur Endofit, Penicillium simplicissimum, yang Diisolasi dari Rimpang Jahe Merah
Abstract
Rimpang jahe merah digunakan sebagai tumbuhan obat tradisional dan diketahui mengandung senyawa-senyawa berkhasiat. Dekade ini eksplorasi mikroorganisme yang bersimbiosis dengan tumbuhan obat mendapat perhatian besar guna mencari alternatif sumber senyawa berkhasiat obat. Penelitian ini bertujuan memperoleh informasi profil kimia ekstrak Penicillium simplicissimum, jamur endofit yang diisolasi dari rhizoma jahe merah, menentukan daya hambatnya terhadap bakteri Staphyloccocus aureus dan Escherichia coli, dan mengevaluasi aktivitas sitotoksiknya terhadap sel limfoma tikus L-5178Y, sel kanker payudara (T47D dan 4T1) dan sel kanker usus (WiDr). Skrining fitokimia melalui teknik KLT dan pereaksi spesifik memperlihatkan adanya golongan senyawa alkaloid, triterpenoid, dan sterol pada ekstrak. Analisa data high-performance liquid chromatography dengan detektor photodiode array (HPLC-PDA) yang dikombinasikan dengan data LC-ESI-MS serta perbandingan data literatur memberikan dugaan bahwa salah satu komponen senyawa utama adalah citreonigrin F, yang diisolasi sebelumnya dari P. citreonigrin. Evaluasi aktivitas antibakteri menunjukkan bahwa ekstrak P. simplicissimum tidak memiliki daya hambat terhadap pertumbuhan kedua bakteri uji. Akan tetapi, ekstrak P. simplicissimum memberikan penghambatan yang lemah terhadap sel limfoma tikus L-5178Y pada konsentrasi 10 μg/mL dan aktivitas sitotoksik yang moderat terhadap sel kanker payudara dan sel kanker usus dengan IC50 >100 μg/mL. Temuan ini menunjukkan bahwa jamur endofit P. simplicissimum yang diisolasi dari jahe merah ini memiliki potensi untuk dieksplorasi lebih lanjut guna memperoleh senyawa berkhasiat obat.
Profiling Analysis of HPLC-PDA Combined with LC-ESI-MS and Biological Activity of an Endophytic Fungi P. Simplicissimum Extract Isolated from Red Ginger Rhizome. Red ginger rhizome has been used traditionally as a medicinal plant, and its active principal constituents have been known. In the recent decade, the exploration of endophytes in medicinal plants received huge interest in finding new bioactive compound sources. This research aims to obtain the chemical profile of an endophytic fungi P. simplicissimum extract isolated from Red ginger rhizome. This study also further evaluates its antibacterial activity against Staphyloccocus aureus and Escherichia coli and its cytotoxicity against L-5178, 4T1, T47D, and WiDr cell lines. The phytochemical screening of the extract using the TLC technique and specific reagents shows the existence of alkaloids, triterpenoids, and sterol. The further analysis using high-performance liquid chromatography with photodiode array detector (HPLC-PDA) and LC-MS/MS data, as well as literature comparison, indicated that one of the major compounds was citreonigrin F, which isolated previously from P. citreonigrin. The evaluation of antibacterial activity showed that P. simplicissimum extract did not inhibit the growth of both bacteria tested. However, P. simplicissimum extract showed a weak inhibition against L-5178Y rat lymphoma cells at a concentration of 10 μg/mL and a moderate cytotoxic activity against breast cancer cells and colon cancer cells with IC50 >100 μg/mL. Nevertheless, this study showed that P. simplicissimum isolated from red ginger could be further explored for its bioactive compounds.
Keywords
Full Text:
PDFReferences
Aly, A. H., Debbab, A., and Proksch, P., 2011. Fungal endophytes: Unique Plant Inhabitants with Great Promises. Applied Microbiology and Biotechnology 90 (6), 1829–1845. doi: 10.1007/s00253-011-3270-y.
Ancheeva, E., Daletos, G., and Proksch, P., 2020. Bioactive Secondary Metabolites from Endophytic Fungi. Current Medicinal Chemistry 27 (11), 1836–1854. doi: 10.2174/0929867326666190916144709.
Avunduk, S., 2020. Cytotoxicity Meroterpenes: A Review. Journal of Pharmacology and Pharmaceutical Research 3 (2), 1–11.
Clinical and Laboratory Standards Institute, 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved standard - Eleventh edition (Vol. 32). doi: M02-A11.
Dai, C., Chen, C., Guan, D., Chen, H., Wang, F., Wang, W., Zang, Y., Li, Q., Wei, M., Li, X., Zhang, X., Wang, J., Zhou, Q., Zhu, H., and Zhang, Y., 2020. Pesimquinolones Produced by Penicillium simplicissimum and Their Inhibitory Activity on Nitric Oxide Production. Phytochemistry 174, 112327. doi: 10.1016/j.phytochem.2020.112327.
Ebada, S. S., and Ebrahim, W., 2020. Quinoisobutyride A, An Acyclic Antibacterial Tetrapeptide Incorporating an Unprecedented Heterocyclic Amino Acid Residue from the Hypersaline Lake-Derived Fungus Penicillium simplicissimum Strain WSH17. Phytochemistry Letters 36, 5–98. doi: 10.1016/j.phytol.2020.01.022.
Ghasemzadeh, A., Jaafar, H. Z. E., and Rahmat, A., 2016. Variation of the Phytochemical Constituents and Antioxidant Activities of Zingiber officinale var. rubrum Theilade Associated with Different Drying Methods and Polyphenol Oxidase Activity. Molecules 21 (6). doi: 10.3390/molecules21060780.
Globocan, 2020. Globocan 2020: new global cancer data. https://www.uicc.org/news/globocan-2020-new-global-cancer-data (diakses pada 4 April 2022).
Jia, M., Chen, L., Xin, H. L., Zheng, C. J., Rahman, K., Han, T., and Qin, L. P., 2016. A Friendly Relationship Between Endophytic Fungi and Medicinal Plants: A Systematic Review. Frontiers in Microbiology 7, 1–14. doi: 10.3389/fmicb.2016.00906.
Komai, S.I., Hosoe, T., Itabashi, T., Nozawa, K., Okada, K., Takaki, G.M.C., Yaguchi, T., Takizawa, K., Fukushima, K., and Kawai, K. I. 2005. Two New Merotrpenoids, Penisimplicin A and B, Isolated from Penicillium simplicissimum. Chemical and Pharmaceutical Bulletin 53(99), 1114–1117.
Komai, S. I., Hosoe, T., Itabashi, T., Nozawa, K., Yaguchi, T., Fukushima, K., and Kawai, K. I., 2006. New Penicillide Derivatives Isolated from Penicillium simplicissimum. Journal of Natural Medicines 60 (3), 185–190. doi: 10.1007/s11418-005-0028-9.
Masriani, Mustofa, Jumina, Sunarti, and Enawaty, E., 2014. Cytotoxic and Pro-Apototic Activities of Crude Alkaloid from Root of Sengkubak (Pycnarrhena cauliflora (Miers) Diels) in Human Breast Cancer T47D Cell Line. Scholars Academic Journal of Biosciences 2 (5), 336–340.
Pamungkas, Y. P., and Dewi, M., 2013. Efek Antibakteri Perasan Jahe Merah (Zingiber officinale var. rubrum) terhadap Bakteri Escherichia coli secara In vitro. Jurnal Farmasetis 2 (2), 46–51.
Pavia, D.L., Lampman, G.M., Kriz, J.S., and Vyvyan, J.R., 2009. Introduction to Spectroscopy 4th ed. Brooks/Cole, Belmoont, USA.
Prayong, P., Barusrux, S., and Weepreeyakul., 2008. Cytotoxic Activity Screening of Some Indigenous Thai Plants. Fitoterapia 79, 598 – 601. doi:10.1016/j.fitote.2008.06.007
Rialita, T., Rahayu, W.P., Nuraida, L., and Nurtama, B., 2015. Aktivitas Antimikroba Minyak Esensial Jahe Merah (Zingiber officinale var. Rubrum) dan Lengkuas Merah (Alpinia purpurata K. Schum) terhadap Bakteri Patogen dan Perusak Pangan. Agritech 35(1), 43–52.
Rusman, Y., (2006). Isolation of New Secondary Metabolites from Spong-Associated and Plant-Derived Endophytic Fungi. Ph.D. Dissertation Heinrich-Heine-Universität Düsseldorf, 303.
Shiono, Y., Akiyama, K., Hayashi, H., 1999. New Okaramine Congeners, Okamines J, K, L, M and Related Compounds, from Penicillium simplicissimum ATCC 90288. Bioscience, Biotechnology and Biochemistry 63 (11), 1910–1920. doi: 10.1271/bbb.63.1910.
Shiono, Y., Akiyama, K., and Hayashi, H., 2000. Okaramines N, O, P, Q and R, New Okaramine Congeners, from Penicillium simplicissimum ATCC 90288. Bioscience, Biotechnology and Biochemistry 64, 103–110. doi: 10.1271/bbb.64.103.
Sticher, O., 2008. Natural Product Isolation. Natural Product Reports 25, 517–554. doi: 10.1039/b700306b.
Supu, R. D., Diantini, A., and Levita, J., 2019. Red ginger (Zingiber officinale var. rubrum): its Chemical Constituents, Pharmalogical Activies, and Safety. Fitofarmaka: Jurnal Ilmiah Farmasi 8 (1), 23–29. doi: 10.33751/jf.v8i1.1168.
Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S. M., Kim, Y. H., and Lee, I. J., 2012. Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth During Stress. Molecules 17(9), 10754–10773. doi: 10.3390/molecules170910754.
Xu, R., Li, X. M., and Wang, B. G., 2016. Penicisimpins A–C, Three New Dihydroisocoumarins from Penicillium simplicissimum MA-332, a Marine Fungus Derived from the Rhizosphere of the Mangrove Plant Bruguiera sexangula var. rhynchopetala. Phytochemistry Letters 17, 114–118. doi: 10.1016/j.phytol.2016.07.003.
Yuan, Y., Feng, H., Wang, L., Li, Z., Shi, Y., Zhao, L. H., Feng, Z., and Zhu, H., 2017. Potential of Endophytic Fungi Isolated from Cotton Roots for Biological Control against Verticillium Wilt Disease. PLoS ONE 12 (1), 1–12. doi: 10.1371/journal.pone.0170557.
Zhang, S., Kou, X., Mak, K.,Balijepalli, M.K., and Pichika, M.R., 2022. Zingiber officinale var. rubrum: Red Ginger’s Medicinal Uses. Molecules 27, 775. doi: 10.3390/molecules27030775.
Refbacks
- There are currently no refbacks.