Eddy Heraldy, Khoirina Dwi Nugrahaningtyas, Heriyanto Heriyanto


The study of calcination at 450 ºC on Ca-Mg-Al-hydrotalcite synthesized from brine water has been investigated. Characterization by XRD shows that Ca-Mg-Al hydrotalcite compound has found hydrotalcite phase and another phase such as Mg(OH)2, Al(OH)3 and CaCO3. These results are confirmed by the presence of hydroxyl groups (-O-H), M-O and M-OH groups (M is Mg, Ca and Al) at wavenumber region around     3463,34 cm-1; 447,50 cm-1; 536,62 cm-1and 786,99 cm-1. The calcination on Ca-Mg-Al hydrotalcite at 450 ºC affected change in the structure become a metal oxide such as MgO, CaO, Al2O3, MgAl2O4, and CaCO3. These results are confirmed from decreasing on the absorption peak of M-OH group at wavenumbers around 536,62 cm-1and 786,99 cm-1 and widening of the absorption region at 447,5 - 857,4 cm-1. Consequently, the calcination treatment successfully increased the surface area of Ca-Mg-Al hydrotalcite compounds from 97.4 m2/g to 156.826 m2/g. Morphology of Ca-Mg-Al hydrotalcite underwent changes the shape from a big to be a small form. Thermal analysis results showed changes in the structure of Ca-Mg-Al hydrotalcite into oxides begin at a temperature of 210 ºC and become oxide completely after the temperature reaches 420 ºC.


brine water; calcination; hydrotalcite

Full Text:



Bera, P., Rajamathi, M., Hegde, M.S., 2000. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites. Bull. Mater. Sci. 23, 141–145

Brady, J.P., 2011. An examination of the applicability of hydrotalcite for removing oxalate anions from bayer precess solutions. Queensland

Basag, S., Piwowarska, Z., Kowalczyk, A., Węgrzyn, A., Baran, R., Gil, B., Michalik, M., Chmielarz, L., 2016. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen — The influence of Mg/Al ratio and calcination temperature. Appl. Clay Sci, 129, 122–130.

Cavani, F., Trifirò, F., Vaccari, A., 1991. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 11, 173–301. doi:10.1016/0920-5861(91)80068-K

Gao, L., Teng, G., Xiao, G., Wei, R., 2010. Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst. Biomass Bioenergy 34, 1283–1288. doi:10.1016/j.biombioe.2010.03.023

Heraldy, E., Nurcahyo, I.F., Ainurofiq, A., 2012. Pembuatan Senyawa Hydrotalcite-Like dari Brine Water untuk Eksipien Industri Farmasi, in: Prosiding InSINas 2012. pp. 37–44.

Heraldy, E., Santosa, S.J., Triyono, Wijaya, K., 2015. Anionic and cationic dyes removal from aqueous solutions by adsorption onto synthetic Mg/Al hydrotalcite-like compound. Indones. J. Chem. 15, 234–241.

Heraldy, E., Nugrahaningtyas, K. D., Sanjaya, F. B., Darojat, A. A., Handayani, D. S., Hidayat, Y., 2016. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide, in: IOP Conf. Series: Materials Science and Engineering 107, doi:10.1088/1757-899X/107/1/012025

Karina, W., Heraldy, E., Pramono, E., Heriyanto, Astuti, S., 2016. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite, in: AIP Conference Proceedings. pp. 1–6. doi:10.1063/1.4941485

Misra, C. and Perrotta, A.J., 1992. Composition and Properties of Synthetic Hydrotalcites. Clays Clay Miner. 40, 145–150. doi:10.1346/CCMN.1992.0400202

Mokhtar, M., Inayat, A., O, J., Schwieger, W., 2010. Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide : A comparative study. Appl. Clay Sci. 50, 176–181. doi:10.1016/j.clay.2010.07.019

Mokhtar, M., Saleh, T.S., Basahel, S.N., 2012. Mg – Al hydrotalcites as efficient catalysts for aza-Michael addition reaction : A green protocol. J. Mol. Catal. A Chem. 353–354, 122–131. doi:10.1016/j.molcata.2011.11.015

Occelli, M.L., Olivier, J.P., Auroux, a., Kalwei, M., Eckert, H., 2003. Basicity and Porosity of a Calcined Hydrotalcite-Type Material from Nitrogen Porosimetry and Adsorption Microcalorimetry Methods. Chem. Mater. 15, 4231–4238. doi:10.1021/cm030105b

Patnaik, P., 2003. Handbook of Inorganic Chemicals, Ebook. McGraw-Hill Companies, Inc., New York

Plank, J., Dai, Z., Andres, P.R., 2006. Preparation and characterization of new Ca-Al-polycarboxylate layered double hydroxides. Mater. Lett. 60, 3614–3617. doi:10.1016/j.matlet.2006.03.070

Radha, a. V., Kamath, P.V., Shivakumara, C., 2005. Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with Al. Solid State Sci. 7, 1180–1187. doi:10.1016/j.solidstatesciences.2005.05.004

Rives, V., 2001. Layered Double Hydroxides Present and Future. Nova Science Publishers, Inc., New York

Selvam, T., Inayat, A., Schwieger, W., 2014. Reactivity and applications of layered silicates and layered double hydroxides. Dalt. Trans. 43, 10365–10387. doi:10.1039/c4dt00573b

Silverstein, M.R., Webster, F.X., Kiemle, D.J., 2005. Spectrometric Identification of Organic Compounds, Seventh. ed, Organic Chemistry. John Wiley & Sons, Inc., New York. doi:10.1016/0022-2860(76)87024-X

Zhang, M.L., Gao, Y., Li, L.F., 2011. Hydrothermal Synthesis and Characterization of Ca-Mg-Al Hydrotacite-Like Compounds. Adv. Mater. Res. 287–290, 569–572. doi:10.4028/


  • There are currently no refbacks.