Calcination on Ca-Mg-Al Hydrotalcite from Brine Water and Its Characterization

Eddy Heraldy, Khoirina Dwi Nugrahaningtyas, Heriyanto Heriyanto

Abstract

The study of calcination treatment at 450°C on Ca-Mg-Al-hydrotalcite from brine water has been investigated. Characterization by XRD shows that Ca-Mg-Al hydrotalcite compound has found hydrotalcite phase and another phase such as Mg(OH)2, Al(OH)3 and CaCO3. These results are confirmed by the presence of hydroxyl groups, M-O and M-OH groups (M is Mg, Ca and Al) at wavenumber region around 3464.35 cm-1, 447.50 cm-1 and 531.41 cm-1. The calcination effect on Ca-Mg-Al hydrotalcite compounds at 450ºC being led to changes in structure become an metal oxide such as MgO, CaO, Al2O3, MgAl2O4 and CaCO3. These results are confirmed from decreasing on the absorption peak of M-OH group at wavenumbers region around 531.41 cm-1 and 786.99 cm-1 and widening of the absorption region at 500-900 cm-1. Consequently, the calcination treatment successfully increased the surface area of Ca-Mg-Al hydrotalcite compounds from 97.4 m2/g to 156.826 m2/g. Morphology of Ca-Mg-Al hydrotalcite changes the shape from a big to be small shape and the particle size distribution of 0-0.25 μm into 0-1 μm. Thermal analysis showed changes in the structure of hydrotalcite into oxide begins at a temperature of 265°C and started to become oxide completely after the temperature reaches 428°C.

Keywords

brine water; calcination; hydrotalcite

References

Bera, P., Rajamathi, M., Hegde, M.S., 2000. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites. Bull. Mater. Sci. 23, 141–145

Brady, J.P., 2011. An examination of the applicability of hydrotalcite for removing oxalate anions from bayer precess solutions. Queensland

Basag, S., Piwowarska, Z., Kowalczyk, A., Węgrzyn, A., Baran, R., Gil, B., Michalik, M., Chmielarz, L., 2016. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen — The influence of Mg/Al ratio and calcination temperature. Appl. Clay Sci, 129, 122–130.

Cavani, F., Trifirò, F., Vaccari, A., 1991. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 11, 173–301. doi:10.1016/0920-5861(91)80068-K

Gao, L., Teng, G., Xiao, G., Wei, R., 2010. Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst. Biomass Bioenergy 34, 1283–1288. doi:10.1016/j.biombioe.2010.03.023

Heraldy, E., Nurcahyo, I.F., Ainurofiq, A., 2012. Pembuatan Senyawa Hydrotalcite-Like dari Brine Water untuk Eksipien Industri Farmasi, in: Prosiding InSINas 2012. pp. 37–44.

Heraldy, E., Santosa, S.J., Triyono, Wijaya, K., 2015. Anionic and cationic dyes removal from aqueous solutions by adsorption onto synthetic Mg/Al hydrotalcite-like compound. Indones. J. Chem. 15, 234–241.

Heraldy, E., Nugrahaningtyas, K. D., Sanjaya, F. B., Darojat, A. A., Handayani, D. S., Hidayat, Y., 2016. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide, in: IOP Conf. Series: Materials Science and Engineering 107, doi:10.1088/1757-899X/107/1/012025

Karina, W., Heraldy, E., Pramono, E., Heriyanto, Astuti, S., 2016. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite, in: AIP Conference Proceedings. pp. 1–6. doi:10.1063/1.4941485

Misra, C. and Perrotta, A.J., 1992. Composition and Properties of Synthetic Hydrotalcites. Clays Clay Miner. 40, 145–150. doi:10.1346/CCMN.1992.0400202

Mokhtar, M., Inayat, A., O, J., Schwieger, W., 2010. Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide : A comparative study. Appl. Clay Sci. 50, 176–181. doi:10.1016/j.clay.2010.07.019

Mokhtar, M., Saleh, T.S., Basahel, S.N., 2012. Mg – Al hydrotalcites as efficient catalysts for aza-Michael addition reaction : A green protocol. J. Mol. Catal. A Chem. 353–354, 122–131. doi:10.1016/j.molcata.2011.11.015

Occelli, M.L., Olivier, J.P., Auroux, a., Kalwei, M., Eckert, H., 2003. Basicity and Porosity of a Calcined Hydrotalcite-Type Material from Nitrogen Porosimetry and Adsorption Microcalorimetry Methods. Chem. Mater. 15, 4231–4238. doi:10.1021/cm030105b

Patnaik, P., 2003. Handbook of Inorganic Chemicals, Ebook. McGraw-Hill Companies, Inc., New York

Plank, J., Dai, Z., Andres, P.R., 2006. Preparation and characterization of new Ca-Al-polycarboxylate layered double hydroxides. Mater. Lett. 60, 3614–3617. doi:10.1016/j.matlet.2006.03.070

Radha, a. V., Kamath, P.V., Shivakumara, C., 2005. Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with Al. Solid State Sci. 7, 1180–1187. doi:10.1016/j.solidstatesciences.2005.05.004

Rives, V., 2001. Layered Double Hydroxides Present and Future. Nova Science Publishers, Inc., New York

Selvam, T., Inayat, A., Schwieger, W., 2014. Reactivity and applications of layered silicates and layered double hydroxides. Dalt. Trans. 43, 10365–10387. doi:10.1039/c4dt00573b

Silverstein, M.R., Webster, F.X., Kiemle, D.J., 2005. Spectrometric Identification of Organic Compounds, Seventh. ed, Organic Chemistry. John Wiley & Sons, Inc., New York. doi:10.1016/0022-2860(76)87024-X

Zhang, M.L., Gao, Y., Li, L.F., 2011. Hydrothermal Synthesis and Characterization of Ca-Mg-Al Hydrotacite-Like Compounds. Adv. Mater. Res. 287–290, 569–572. doi:10.4028/www.scientific.net/AMR.287-290.569

Refbacks

  • There are currently no refbacks.