Pengaruh Fly Ash sebagai Katalis pada Proses Pirolisis Pelet Sekam Padi terhadap Karakteristik Termal dan Produksi Synthetic Gas (Syngas)

Joko Waluyo, Rizky Ridlo Ichlasul Amal, Abdul Aziz Yudistira, Handhianto Mustofa, Muhammad Luthfi Maulana

Abstract

Ketersediaan bahan bakar sebagai energi semakin menurun, sehingga dibutuhkan suatu energi alternatif dalam upaya menunjang ketersediaan energi, salah satunya melalui pemanfaatan proses pirolisis biomassa. Proses katalitik pirolisis biomassa menjadi pilihan baru karena dapat menurunkan input energi, konsumsi waktu serta meningkatkan kualitas produksi syngas dibandingkan dengan non-katalitik. Tujuan penelitian ini adalah menentukan analisa karakteristik termal dan analisis yield syngas dalam penambahan fly ash sebagai katalis dalam proses pirolisis sekam padi. Penggunaan fly ash sebagai katalis menjadi salah satu alternatif dalam pemakaian katalis murah. Sampel biomassa sekam padi dihaluskan terlebih dahulu lalu dilakukan penyaringan hingga ukuran -140+200 mesh (0,074 – 0,105 mm). Fly ash yang merupakan limbah hasil pembakaran batubara diperoleh dari industri pembangkit listrik juga disaring dengan ukuran yang sama. Kemudian fly ash dan sekam padi dicampurkan untuk dibentuk pelet dengan variasi sampel penambahan fly ash 5% (FARH5), 10% (FARH10), 20% (FARH20) dari massa sekam padi. Pelet yang dihasilkan berukuran diameter 5 mm dan panjang 13 ‒ 15 mm. Proses pirolisis dilakukan dalam laju pemanasan 10 °Cmin-1 hingga mencapai suhu 600 °C menggunakan alat makro-TGA dengan gas nitrogen sebagai gas pembawa. Hasil syngas dari proses pirolisis ditampung dalam gas bag untuk dianalisis menggunakan GC. Pengolahan data hasil pirolisis dilakukan untuk mengetahui karakteristik termal melalui metode DTG (Differential Thermogravimetric). Hasil dari penelitian ini diperoleh bahwa penambahan katalis fly ash optimal pada variabel FARH20 dapat meningkatkan laju konversi maksimum 0,00893 K-1 pada suhu operasi reaksi yang lebih rendah 567,11 K dan peningkatan yield syngas pada variabel FARH10 sebesar 47,04%.

The Effect of Fly Ash as a Catalyst on Pyrolysis Process of Rice Husk Pellets on Thermal Characteristics and Synthetic Gas (Syngas) Production. Utilization of the biomass pyrolysis process is one of the efforts to support alternative energy development to overcome the current declining availability of fuel. The catalytic pyrolysis of biomass is a new strategy to reduce energy input and time consumption, and improve syngas quality compared to non-catalytic. The purpose of this study was to examine the effect of fly ash as a catalyst in the process of rice husk pyrolysis as a low-cost catalyst for thermal properties and syngas yield. The rice husk biomass sample was milled and sieved to -140+200 mesh (0,074 – 0,105 mm). Fly ash, a byproduct of coal combustion obtained from the power generation industry, was sieved to the same size as well. The fly ash and rice husks were then combined to form pellets, with variations of 5% (FARH5), 10% (FARH10), and 20% (FARH20) fly ash provided to the mass of rice husks. The formed pellets have a diameter of 5 mm and a length of 1315 mm. Using a macro-TGA device and nitrogen gas as the carrier gas, the pyrolysis process was carried out at a heating rate of 10 °Cmin-1 to a temperature of 600 °C. The syngas was placed in a gas bag for further examination using gas chromatography (GC). Pyrolysis data was processed to determine thermal properties using the DTG (Differential Thermogravimetric) method. The addition of an optimal fly ash catalyst in the FARH20 increased the maximum conversion rate to 0.00893 K-1 at a lower reaction operating temperature of 567.11 K and increased the syngas yield by 47.04% on the FARH10.

Keywords

rice husk; fly ash; catalytic pyrolysis; syngas; tga.

Full Text:

PDF

References

Abaide, E.R., Tres, M.V., Zabot, G.L. and Mazutti, M.A., 2019. Reasons for Processing of Rice Coproducts: Reality and Expectations. Biomass and Bioenergy 120, 240‒256. doi: 10.1016/j.biombioe.2018.11.032.

Astawan, M. and Febrinda, A.E., 2010. Potensi Dedak dan Bekatul Beras sebagai Ingredient Pangan dan Produk Pangan Fungsional. Jurnal Pangan 19(1), 14‒21. doi: 10.33964/jp.v19i1.104.

Badan Pusat Statistik, 2021. Produksi Komoditas Sekam Padi 2019-2021. Jakarta: Badan Pusat Statistik

Balasundram, V., Ibrahim, N., Kasmani, R.M., Hamid, M.K.A., Isha, R., Hasbullah, H. and Ali, R.R., 2017. Thermogravimetric Catalytic Pyrolysis and Kinetic Studies of Coconut Copra and Rice Husk for Possible Maximum Production of Pyrolysis Oil. Journal of Cleaner Production 167, 218‒228. doi: 10.1016/j.jclepro.2017.08.173.

Basu, P., 2018. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press.

Bridgwater, A.V., 1996. Production of High Grade Fuels and Chemicals from Catalytic Pyrolysis of Biomass. Catalysis Today 29(1-4), 285‒295. doi: 10.1016/0920-5861(95)00294-4.

Bridgwater, A.V., 2012. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass and Bioenergy 38, 68‒94. doi: 10.1016/j.biombioe.2011.01.048.

Hatakayema, T. and Quinn, F.X., 1999. Thermal analysis: fundamentals and applications to polymer science. [sl].

Houston, D.F., 1972. Rice Hulls. Rice chemistry and Technology, 301‒352.

Loy, A.C.M., Yusup, S., Lam, M.K., Chin, B.L.F., Shahbaz, M., Yamamoto, A. and Acda, M.N., 2018. The Effect of Industrial Waste Coal Bottom Ash as Catalyst in Catalytic Pyrolysis of Rice Husk for Syngas Production. Energy Conversion and Management 165, 541‒554. doi: 10.1016/j.enconman.2018.03.063.

Mochizuki, T., Atong, D., Chen, S.Y., Toba, M. and Yoshimura, Y., 2013. Effect of SiO2 Pore Size on Catalytic Fast Pyrolysis of Jatropha Residues by Using Pyrolyzer-GC/MS. Catalysis Communications 36, 1‒4. doi: 10.1016/j.catcom.2013.02.018.

Nahil, M.A., Wang, X., Wu, C., Yang, H., Chen, H. and Williams, P.T., 2013. Novel Bi-Functional Ni–Mg–Al–CaO Catalyst for Catalytic Gasification of Biomass for Hydrogen Production with In Situ CO2 Adsorption. Rsc Advances 3(16), 5583‒5590. doi: 10.1039/C3RA40576A.

Quispe, I., Navia, R. and Kahhat, R., 2017. Energy Potential from Rice Husk Through Direct Combustion and Fast Pyrolysis: A Review. Waste Management 59, 200‒210. doi: 10.1016/j.wasman.2016.10.001.

Said, M.S., Nurhawaisyah, S.R., Juradi, M.I., Asmiani, N. and Kusuma, G.J., 2020. Analisis Kandungan Fly Ash sebagai Alternatif Bahan Penetral dalam Penanggulangan Air Asam Tambang. Jurnal Geomine 7(3), 170. doi: 10.33536/jg.v7i3.479.

Shahbaz, M., Yusup, S., Inayat, A., Ammar, M., Patrick, D.O., Pratama, A. and Naqvi, S.R., 2017. Syngas Production from Steam Gasification of Palm Kernel Shell with Subsequent CO2 Capture Using Cao Sorbent: an Aspen Plus Modeling. Energy & Fuels 31(11), 12350‒12357. doi: 10.1021/acs.energyfuels.7b02670.

Tutsek, A. and Bartha, P., Refratechnik GmbH, 1977. Method of Producing Low-Carbon, White Husk Ash. U.S. Patent 4, 049, 464.

Waluyo, J., Makertihartha, I. G. B. N., and Susanto, H., 2018. Pyrolysis with Intermediate Heating Rate of Palm Kernel Shells: Effect Temperature and Catalyst on Product Distribution. In AIP Conference Proceedings 1977(1), 020026). AIP Publishing LLC. doi: 10.1063/1.5042882

Xue, Y., Johnston, P. and Bai, X., 2017. Effect of Catalyst Contact Mode and Gas Atmosphere During Catalytic Pyrolysis of Waste Plastics. Energy Conversion and Management, 142, 441‒451. doi: 10.1016/j.enconman.2017.03.071.

Yoon, S.J., Son, Y.I., Kim, Y.K. and Lee, J.G., 2012. Gasification and Power Generation Characteristics of Rice Husk and Rice Husk Pellet Using a Downdraft Fixed-Bed Gasifier. Renewable Energy, 42, 163‒167. doi: 10.1016/j.renene.2011.08.028.

Yudiartono, A., Sugiyono, A., Laode M.A., and Wahid, A. 2018. Outlook Energi Indonesia 2018. Badan Pengkajian dan Penerapan Teknologi (BPPT). Jakarta: Pusat Pengkajian Industri Proses dan Energi (PPIPE).

Refbacks

  • There are currently no refbacks.