Penambatan Molekul dan Simulasi Dinamika Molekular Kandungan Minyak Kayu Manis dan Minyak Serai Dapur Sebagai Antibakteri Methicillin Resistant Staphylococcus aureus

Caesart Leonardo Kaharudin, Afif Akmal Afkauni, Aditya Yuan Pramudyansyah, Niko Prasetyo

Abstract

Meluasnya penyebaran Methicillin Resistant Staphylococcus aureus (MRSA) yang kebal terhadap antibiotik β-laktam membuat penelitian untuk menemukan senyawa aktif yang memiliki potensi sebagai antibakteri MRSA menjadi penting. Salah satu penelitian yang dapat dilakukan adalah studi penambatan molekul. Studi penambatan molekul telah dilakukan menggunakan senyawa bahan alam dari minyak kayu manis dan minyak serai dapur dengan reseptor enzim Penicillin Binding Protein 2a (PBP2a). Studi ini memiliki tujuan untuk memprediksi kemampuan senyawa bahan alam dari kedua minyak atsiri tersebut sebagai antibakteri MRSA. Penambatan molekul dilakukan menggunakan perangkat lunak (software) AutoDock 4.2. Hasil penelitian menunjukkan bahwa senyawa dengan potensi sebagai antibakteri paling besar adalah trans-β-kariofilen dan geranil asetat dengan energi ikat sebesar -6,12 dan -5,11 kkal/mol dan konstanta inhibisi sebesar 32,69 dan 180,41 µM. Hasil penambatan molekul kemudian dilanjutkan dengan simulasi dinamika molekular. Hasil simulasi dinamika molekular menunjukkan bahwa kedua senyawa memiliki nilai Root Mean Square Deviation (RMSD) yang tinggi.

Molecular Docking and Molecular Dynamics Simulation of Cinnamon Oil and Kitchen Lemongrass Oil as Antibacterial Agent Against Methicillin-Resistant Staphylococcus aureus. The spread of Methicillin-Resistant Staphylococcus aureus (MRSA) caused the research for its antibiotic to become more pressing than ever. One of the research that can be conducted is a molecular docking study. A molecular docking study of natural products from cinnamon and lemongrass oil with Penicillin Binding Protein 2a (PBP2a) enzyme was conducted. This study aims to predict the ability of each natural product to become an MRSA antibiotic. The molecular docking was conducted with AutoDock 4.2 software. The result shows that β-caryophyllene and geranyl acetate have the most potential to become MRSA antibiotics with binding energies of -6.12 kcal/mol and -5.11 kcal/mol and inhibition constants of 32.69 μM and 180.41 µM, respectively. The results of molecular docking were validated using molecular dynamic simulation. Molecular dynamic simulation shows that both complexes have a high root mean square deviation (RMSD) value.

Keywords

antibiotic; natural product; MRSA; molecular docking.

Full Text:

PDF

References

Agrahari, A.K., Sneha, P., George Priya Doss, C., Siva, R., and Zayed, H., 2018. A Profound Computational Study to Prioritize the Disease-Causing Mutations in PRPS1 Gene. Metabolic Brain Disease 33, 589–600. doi: 10.1007/s11011-017-0121-2.

Aier, I., Varadwaj, P.K., and Raj, U., 2016. Structural Insights into Conformational Stability of Both Wild-Type and Mutant EZH2 Receptor. Scientific Reports 6, 34984. doi: 10.1038/srep34984.

Alavi, M., and Karimi, N., 2022. Antibacterial, Hemoglobin/Albumin-Interaction, and Molecular Docking Properties of Phytogenic AgNPs Functionalized by Three Antibiotics of Penicillin, Amoxicillin, and Tetracycline. Microbial Pathogenesis 164, 105427. doi: 10.1016/j.micpath.2022.105427.

Alhadrami, H.A., Hamed, A.A., Hassan, H.M., Belbahri, L., Rateb, M.E., and Sayed, A.M., 2020. Flavonoids as Potential anti-MRSA Agents through Modulation of PBP2a: A Computational and Experimental Study. Antibiotics 9, 562. doi: 10.3390/antibiotics9090562.

Allen, M.P., Tildesley, D.J., and Banavar, J.R., 1989. Computer Simulation of Liquids. Physics Today 42, 105–106. doi: 10.1063/1.2810937.

Anggraeni, N.I., Hidayat, I.W., Rachman, S.D., and Ersanda, 2018. Bioactivity of Essential Oil from Lemongrass (Cymbopogon citratus Stapf) as Antioxidant Agent. in: AIP Conference Proceedings 1927, pp. 030007. doi: 10.1063/1.5021200.

Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P., 1987. The Missing Term in Effective Pair Potentials. The Journal of Physical Chemistry 91, 6269–6271. doi: 10.1021/j100308a038.

Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R., 1984. Molecular Dynamics with Coupling to an External Bath. The Journal of Physical Chemistry 81, 3684–3690. doi: 10.1063/1.448118.

Berendsen, H.J.C., van der Spoel, D., and van Drunen, R., 1995. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Computer Physics Communications 91, 43–56. doi: 10.1016/0010-4655(95)00042-E.

Bussi, G., Donadio, D., and Parrinello, M., 2007. Canonical Sampling Through Velocity Rescaling. The Journal of Chemical Physics 126, 014101. doi: 10.1063/1.2408420.

Bux, K., S. Hofer, T., Tarique Moin, S., 2021. Exploring Interfacial Dynamics in Homodimeric S -Ribosylhomocysteine Lyase (Luxs) from Vibrio Cholerae through Molecular Dynamics Simulations. RSC Advances 11, 1700–1714. doi: 10.1039/D0RA08809A.

Chao, S., Young, G., Oberg, C., and Nakaoka, K., 2008. Inhibition of Methicillin-Resistant Staphylococcus aureus (MRSA) by Essential Oils. Flavour and Fragrance Journal 23, 444–449. doi: 10.1002/ffj.1904.

Craft, K.M., Nguyen, J.M., Berg, L.J., and Townsend, S.D., 2019. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-Resistance and the Biofilm Phenotype. Medicinal Chemistry Communication 10, 1231–1241. doi: 10.1039/C9MD00044E.

Ersoy, S.C., Chambers, H.F., Proctor, R.A., Rosato, A.E., Mishra, N.N., Xiong, Y.Q., and Bayer, A.S., 2021. Impact of Bicarbonate on PBP2a Production, Maturation, and Functionality in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 65, e02621-20. doi: 10.1128/AAC.02621-20.

Fuda, C., Suvorov, M., Vakulenko, S.B., and Mobashery, S., 2004. The Basis for Resistance to β-Lactam Antibiotics by Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus. Journal of Biological Chemistry 279, 40802–40806. doi: 10.1074/jbc.M403589200.

Grela, E., Wieczór, M., Luchowski, R., Zielinska, J., Barzycka, A., Grudzinski, W., Nowak, K., Tarkowski, P., Czub, J., and Gruszecki, W.I., 2018. Mechanism of Binding of Antifungal Antibiotic Amphotericin B to Lipid Membranes: An Insight from Combined Single-Membrane Imaging, Microspectroscopy, and Molecular Dynamics. Molecular Pharmaceutics 15, 4202–4213. doi: 10.1021/acs.molpharmaceut.8b00572.

Hess, B., Bekker, H., Berendsen, H.J.C., and Fraaije, J.G.E.M., 1997. LINCS: A Linear Constraint Solver for Molecular Simulations. Journal of Computational Chemistry 18, 1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.

Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., and MacKerell, A.D., 2017. CHARMM36: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Biophysical Journal 112, 175a–176a. doi: 10.1016/j.bpj.2016.11.971.

Jiang, Z., You, L., Dou, W., Sun, T., and Xu, P., 2019. Effects of an Electric Field on the Conformational Transition of the Protein: A Molecular Dynamics Simulation Study. Polymers 11, 282. doi: 10.3390/polym11020282.

Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., and Grubmüller, H., 2019. More Bang for Your Buck: Improved Use of GPU Nodes for GROMACS 2018. Journal of Computational Chemistry 40, 2418–2431. doi: 10.1002/jcc.26011.

Mahasenan, K.V., Molina, R., Bouley, R., Batuecas, M.T., Fisher, J.F., Hermoso, J.A., Chang, M., and Mobashery, S., 2017. Conformational Dynamics in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus, Allosteric Communication Network and Enablement of Catalysis. Journal of the American Chemical Society 139, 2102–2110. doi: 10.1021/jacs.6b12565.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry 30, 2785–2791. doi: 10.1002/jcc.21256.

Motiejūnas, D., and Wade, R., 2007. Structural, Energetic, and Dynamic Aspects of Ligand–Receptor Interactions. Comprehensive Medicinal Chemistry II 4, 193–212. doi: 10.1016/B0-08-045044-X/00250-9.

Mukarram, M., Khan, M.M.A., Zehra, A., Choudhary, S., Naeem, M., and Aftab, T., 2021. Biosynthesis of Lemongrass Essential Oil and the Underlying Mechanism for Its Insecticidal Activity, in: Aftab, T., Hakeem, K.R. (Eds.), Medicinal and Aromatic Plants: Healthcare and Industrial Applications. Springer International Publishing, Cham, pp. 429–443. doi: 10.1007/978-3-030-58975-2_18.

Nanjundaswamy, S., Bindhu, S., Arun Renganathan, R.R., Nagashree, S., Karthik, C.S., Mallu, P., and Ravishankar Rai, V., 2021. Design, Synthesis of Pyridine Coupled Pyrimidinone/Pyrimidinthione as Anti-MRSA Agent: Validation by Molecular Docking and Dynamics Simulation. Journal of Biomolecular Structure and Dynamics 0, 1–12. doi: 10.1080/07391102.2021.1968496.

Okwu, M.U., Olley, M., Akpoka, A.O., and Izevbuwa, O.E., 2019. Methicillin-resistant Staphylococcus aureus (MRSA) and Anti-MRSA Activities of Extracts of some Medicinal Plants: A Brief Review. AIMS Microbiology 5, 117–137. doi: 10.3934/microbiol.2019.2.117.

Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., and Lindahl, E., 2013. GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 29, 845–854. doi: 10.1093/bioinformatics/btt055.

Torres, M.D.T., and de la Fuente-Nunez, C., 2019. Toward Computer-Made Artificial Antibiotics. Current Opinion in Microbiology 51, 30–38. doi: 10.1016/j.mib.2019.03.004.

Uzair, B., Niaz, N., Bano, A., Khan, B.A., Zafar, N., Iqbal, M., Tahira, R., and Fasim, F., 2017. Essential Oils Showing In Vitro Anti MRSA and Synergistic Activity with Penicillin Group of Antibiotics. Pakistan Journal of Pharmaceutical Sciences 30(5), 1997–2002.

Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., and Mackerell, A.D., 2009. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. Journal of Computational Chemistry 31(4), 671-690. doi: 10.1002/jcc.21367.

Verma, A.K., Ahmed, Sk.F., Hossain, Md.S., Bhojiya, A.A., Mathur, A., Upadhyay, S.K., Srivastava, A.K., Vishvakarma, N.K., Barik, M., Rahaman, Md.M., and Bahadur, N.M., 2021. Molecular Docking and Simulation Studies of Flavonoid Compounds Against PBP-2a of Methicillin‐Resistant Staphylococcus aureus. Journal of Biomolecular Structure and Dynamics 0, 1–17. doi: 10.1080/07391102.2021.1944911.

Wennberg, C.L., Murtola, T., Páll, S., Abraham, M.J., Hess, B., and Lindahl, E., 2015. Direct-Space Corrections Enable Fast and Accurate Lorentz–Berthelot Combination Rule Lennard-Jones Lattice Summation. Journal of Chemical Theory and Computation 11, 5737–5746. doi: 10.1021/acs.jctc.5b00726.

Zouhir, A., Jridi, T., Nefzi, A., Ben Hamida, J., and Sebei, K., 2016. Inhibition of Methicillin-Resistant Staphylococcus aureus (MRSA) by Antimicrobial Peptides (AMPs) and Plant Essential Oils. Pharmaceutical Biology 54, 3136–3150. doi: 10.1080/13880209.2016.1190763.

Refbacks

  • There are currently no refbacks.