Adsorpsi Anilin oleh Karbon Aktif Magnetik Cangkang Kelapa Sawit
Abstract
Karbon aktif merupakan salah satu adsorben yang dapat dikompositkan dengan besi oksida menjadi karbon aktif magnetik (KAM) sehingga mempermudah proses pemisahannya dari dalam larutan. Penelitian ini menjelaskan kinerja KAM dalam mengadsorpsi anilin dengan menentukan isoterm dan kinetika adsorpsinya serta efektifitas sifat magnet dalam pemisahan KAM. Karbon aktif magnetik dibuat dari cangkang kelapa sawit dikarbonisasi (300 ºC, 2 jam), diaktivasi fisika (600 ºC, 30 menit), dan dilanjutkan aktivasi kimia (ZnCl2 0,05 M). Karbon aktif magnetik dibuat dengan mencampurkan karbon aktif dan larutan Fe(III)/Fe(II) (rasio mol 2:1). Pengukuran daya serap adsorpsi menggunakan variasi konsentrasi anilin (25, 50, 75, 100, dan 125 ppm) dan waktu kontak (60, 120, 180, 240, dan 300 menit). Adsorben KAM dikarakterisasi menggunakan spektrofotometer infra merah (FTIR), difraktometer sinar-X (XRD), fluoresensi sinar-X (XRF), Surface Area Analysis (SAA) dan konsentrasi anilin diukur dengan spektrofotometer UV-Vis. Hasil analisis FTIR menunjukkan munculnya serapan Fe-O pada bilangan gelombang 580,32 cm-1 yang mengindikasikan adanya besi oksida pada KAM. Difraktogram XRD menunjukkan puncak pada 2θ 18,39º; 34,09º; 34,82º; 35,03º; dan 35,87º dari magnetit Fe3O4, puncak 2θ 32,83º; 35,77º; dan 38,18º dari hematit. Hasil SAA menunjukkan luas permukaan KAM 179,40 m2/g, diameter rata-rata pori 24,95 Å dan XRF menunjukkan adanya kandungan Fe2O3 pada KAMsebesar 76,316%. Kapasitas adsorpsi optimum diperoleh pada konsentrasi anilin 100 ppm dengan waktu kontak selama 240 menit sebesar 86,254 mg/g. Kinetika adsorpsi sesuai dengan model pseudo-orde dua (R2 sebesar 0,9934) dengan konstanta kinetika 0,0073 g/(mg.menit).
Aniline Adsorption by Oil Palm Shell Magnetic Activated Carbon. Activated carbon is one of the adsorbents that can be composted with iron oxide into magnetic activated carbon (KAM), making it easier to separate from the waste solution. This research investigated the KAM's performance in absorbing aniline by determining its adsorption isotherms and kinetics as well as the effectiveness of magnetic properties in KAM separation. Magnetic activated carbon was produced by oil palm shells carbonization at (300 ºC, 2 hours), followed by physical activation (600 ºC, 30 minutes), and continued by chemical activation (ZnCl2 0.05 M). Magnetic activated carbon was made by mixing activated carbon and Fe(III)/Fe(II) solution (mole ratio 2:1). Adsorption measurements use variations in aniline concentrations (25, 50, 75, 100, and 125 ppm) and contact times (60, 120, 180, 240, and 300 minutes). KAM adsorbents were characterized using infrared spectrophotometers (FTIR), X-ray diffractometers (XRD), X-ray fluorescence (XRF), and surface area analysis (SAA). Meanwhile, the adsorbed aniline concentrations were measured by UV-Vis spectrophotometers. The results of the FTIR analysis showed the appearance of Fe–O absorption in wavenumbers 580.32 cm-1 indicating the presence of iron oxide in KAM. XRD diffractogram shows peaks at 2θ 18.39º; 34.09º; 34.82º; 35.03º; and 35.87º of Fe3O4 magnetite, and peaks 2θ 32.83º; 35.77º; and 38.18º from hematite. SAA results showed a surface area of KAM of 179.40 m2/g and an average pore diameter of 24.95 Å. XRF showed the presence of Fe2O3 content in KAM of 76.316%. An optimum adsorption capacity of 86.254 mg/g was obtained at an aniline concentration of 100 ppm with a contact time of 240 minutes. Adsorption kinetics correspond to the second-order pseudo-model (R2 of 0.9934) with a kinetic constant of 0.0073 g/(mg.min).
Keywords
Full Text:
PDFReferences
Anyika, C., Asri, N. A. M., Majid, Z. A., Yahya, A., and Jaafar, J., 2017. Synthesis and Characterization of Magnetic Activated Carbon Developed from Palm Kernel Shells. Nanotechnology for Environmental Engineering 2(16), 1–25. doi: 10.1007/s41204-017-0027-6.
Badan Standarisasi Nasional, 1996. Standar Nasional Indonesia 01-1682-1996 tentang Arang Tempurung Kelapa, Badan Standarisasi Nasional. Jakarta.
Cazetta, A. L., Pezoti, O., Bedin, K. C., Silva, T. L., Junior, A. P., Asefa, T., and Almeida, V. C., 2016, Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes. ACS Sustainable Chemistry and Engineering 4(3), 1058‒1068. doi: 10.1021/acssuschemeng.5b01141.
Deng, Q., Chen, C., Lei, Q., Liang, J., Zhang, T., and Jiang, J., 2018. Adsortption of Aniline from Aqueous Solution Using Graphene Oxide-Modified Attapulgite Composites. RSC Advances 8(41), 23382-23389. doi: 10.1039/c8ra04143a.
Do, M. H., Phan, N. H., Nguyen, T. D., Pham, T. T. S., Nguyen, V. K., Vu, T. T. T., and Nguyen, T. K. P., 2011. Activated Carbon/Fe3O4 Nanoparticle Composite: Fabrication, Mrthyl Orang Removal and Regeneration by Hydrogen Peroxide. Chemosphere 85(8), 1269–1276. doi: 10.1016/j.chemosphere.2011.07.023.
Fisli, A., Ariyani, A., Wardiyati, S., and Yusuf, S., 2012. Adsorben Magnetik Nanokoposit Fe3O4 Karbon Aktif untuk Menyerap Thorium. Jurnal Sains Materi Indonesia 13(3), 192–197. doi: 10.17146/jsmi.2012.13.3.4671.
Fisli, A., Yusuf, S., Krisnandi, Y. K., and Gunlazuardi, J., 2014. Preparation and Characterization of Magnetite-Silica Nano-composite as Adsorbents for Removal of Methylene Blue Dyes from Environmental Water Samples. Trans Tech Publications 896, 525–531. doi: 10.4028/www.scientific.net/AMR.896.525.
Fisli, A., Safitri, R. D., Nurbasni, and Deswita., 2018. Analisis Struktur dan Porositas Komposit Fe3O4- Karbon Aktif dari Limbah Kertas Sebagai Adsorben Magnetik. Jurnal Sains Materi Indonesia 19(4), 179‒187.
Foo, K. Y., and Hameed, B. H., 2010. Insights Into the Modeling of Adsorption Isotherm Systems. Chemical Engineering Journal 156, 2–10. doi: 10.1016/j.cej.2009.09.013.
Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M., and Häusermann, D., 2000. Equation of State of Magnetite and its High-Pressure Modification: Thermodynamics of the Fe-O System at High Pressure. American Mineralogist, 85(3–4), 514–523. doi: 10.2138/am-2000-0413.
Ho, Y. S., and Mckay, G,. 1999. Pseudo-Second Order Model for Sorption Processes. Process Biochemistry 34, 451–465. doi: 10.1016/S0032-9592(98)00112-5.
Jianguo, C., Aimin, L., Hongyan, S., Zhenghao, F., Chao, L., and Quanxing, Z., 2005. Adsorption Characteristics of Aniline and 4-Methylaniline onto Bifunctional Polymeric Adsorbent Modified by Sulfonic Groups. Journal of Hazardous Materials 124, 173–180. doi: 10.1016/j.jhazmat.2005.05.001.
Jing, Z., Cao, S., Yu, T., and Hu, J., 2015. Degradation Characteristics of Aniline with Ozonation and Subsequent Treatment Analysis. Journal of Chemistry. doi: 10.1155/2015/905921.
Maihendra, Ahmad, F., and Zultiniar., 2016. Kinetika Adsorpsi pada Penjerapan Ion Timbal Pb2+ Terlarut dalam Air Menggunakan Partikel Tricalcium Phosphate. Jom FTeknik 3(2), 1–5.
Meisrilestari, Y., Khomaini, R., and Wijayanti, H., 2013. Pembuatan Arang Aktif dari Cangkang Kelapa Sawit dengan Aktivasi Secara Fisika. Kimia dan Fisika-Kimia, Konversi 2(1), 46–51.
Maryono, Sudding, and Rahmawati, 2013. Pembuatan dan Analisis Mutu Briket Arang Tempurung Kelapa Ditinjau dari Kadar Kanji, Journal Chemica 14(1), 74–83.
Olalekan, A. P., Dada, A. O., and Olatunya, A., 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry 3(1), 38–45. doi: 10.9790/5736-0313845.
Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021, Tentang Penyelengaraan Perlindungan dan Pengelolaan Lingkungan Hidup.
Rafinel, Apriani, P., and Salim, S. E., 2018. Transfor Anilin dalam Teknik Membran Cair Fasa Ruah dengan Ion Logam Transisi sebagai Fasa Penerima. Jurnal Kimia Unand 7(1), 11–18.
Rugayah, A., Astimar, A., and Norzita, N., 2014. Preparation and Characterisation of Activated Carbon from Palm Kernel Shell by Physical Activation with Steam. Journal of Oil Palm Research 26(3), 251–264.
Safarik, I., Horska, K., Svobodova, B., and Safarikova, M., 2012, Magnetically Modified Spent Coffee Grounds for Dyes Removal, European Food Research and Technology, 234(2), 345–350. doi: 10.1007/s00217-011-1641-3.
Saputri, C. A., 2020. Kapasitas Adsorpsi Serbuk Nata De Coco (Bacterial sellulose) Terhadapa Ion Pb2+ Menggunakan Metode Batch. Jurnal Kimia 14(1), 71–76.
Silva, S. M., Sampaio, K. A., Ceriani, R., Verhé, R., Stevens, C., Greyt, W. De., and Meirelles, A. J. A. 2013. Adsorption of Carotenes and Phosphorus from Palm Oil Onto Acid Activated Bleaching Earth : Equilibrium. Kinetics and Thermodynamics, Journal of Food Engineering 118(4), 341–349. doi: 10.1016/j.jfoodeng.2013.04.026.
Sivashankar, R., Sathya, A. B., Vasantharaj, K., and Sivasubramanian, V., 2014. Magnetic Composite an Enviromental Super Adsorbent for Dye Sequestration - A Review. Environmental Nanotechnology, Monitoring and Management, 1–35. doi: 10.1016/j.enmm.2014.06.001.
Suhendra, E., Purwanto and Kardena, E., 2013. Keberadaan Anilin di Sungai Citarum Hulu Akibat Penggunaan Azo Dyes pada Industri Tekstil. METANA 9(2), 27–40. doi: 10.14710/metana.v9i02.7614.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K. S. W., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9–10), 1051–1069. doi: 10.1515/pac-2014-1117.
Viena, V., Bahagia, and Afrizal, Z., 2020. Produksi Karbon Aktif dari Cangkang Sawit dan Aplikasinya pada Penyerapan Zat Besi, Mangan dan pH Air Sumur. Serambi Engineering 5(1), 875–882. doi: 10.32672/jse.v5i1.1660.
Wang, J., and Guo, X., 2020. Adsorption Isotherm Model: Classificarion Physical Meaning, Appication and Solving Method. Chemosphere, 258, 12727. doi: 10.1016/j.chemosphere.2020.127279
Yenti, S. R., Fadli, A., Wisrayetti, and Hamdani, M., 2019. Model Kesetimbangan Dubinin-Radushkevich pada Adsorpsi Doxorubicin Menggunakan Partikel Hidroksiapatit. Prosiding SBFUR-4, September, 978–979.
Yulianti, A., Taslimah and Sriatum, 2010. Pembuatan Arang Aktif Tempurung Kelapa Sawit untuk Pemucatan Minya Goreng Sisa Pakai. Jurnal Kimia Sains Dan Aplikasinya 13(2), 36–40.
Zhu, L., Lv, M., Dai, X., Xu, X., Qi, H, and Yu, Y., 2012. Reaction Kinetics of the Degradation of Chloroanilines and Aniline by Aerobic Granule. Biochemical Engineering Journal 68, 215–220. doi: 10.1016/j.bej.2012.07.015.
Refbacks
- There are currently no refbacks.