Modifikasi Sifat Elektronik Material Perovskit NaYTiO4 oleh Variasi Konsentrasi Dopan Lantanum dengan Metode Density Functional Theory

Wisanggeni Bayu Aji, Hari Sutrisno


Energi celah pita dan density of state (DOS) dari NaY(1-x)LaxTiO4 (x = 0; 0,25; 0,50 dan 0,75) dapat diprediksi secara teoritis menggunakan pendekatan density functional theory (DFT). Perhitungan awal berdasarkan atas pendekatan local density approximation (LDA) dan generalized gradient approximation dari Perdew-Burke-Ernzerhof (GGA+PBE) sebagai fungsional tukar-korelasi. Perhitungan awal energi celah pita dan DOS dilakukan pada unit sel konvensional (1×1×1) untuk NaYTiO4 dan supersel (2×2×1) untuk NaY(1-x)LaxTiO4 (x = 0,25; 0,50 dan 0,75) dengan program CASTEP Materials Studio. Hasil perhitungan menunjukkan energi celah pita (Eg) sebesar 3,447; 3,384; 3,356 dan 3,560 eV untuk x = 0; 0,25; 0,50 dan 0,75 dengan metode LDA. Di sisi lain, metode GGA+PBE menunjukkan Egsebesar 3,039; 2,963 dan 2,930 eV untuk x = 0; 0,25; 0,50 dan 0,75. Hasil perhitungan karakter DOS menunjukkan bahwa seluruh material menunjukkan transisi Egtersebut dikontribusi oleh transisi elektron antara pita valensi O 2p dan konduksi Ti 3d. Susbtitusi atom La pada posisi atom Y tidak menghasilkan pita di tengah Eg (intermediate band) melainkan hanya memperlebar atau mempersempit celah pita pada NaY(1-x)LaxTiO4 akibat distorsi panjang ikatan Ti‒O. Penelitian ini menunjukkan peran signifikan dari La terhadap sifat elektronik material NaY(1-x)LaxTiO4 untuk aplikasi pada sel surya di masa depan. 

Modification of Electronic Properties of NaYTiO4 Perovskite Material by Variation of Lanthanum Dopants Concentration using Density Functional Theory Method. Bandgap energy and density of state (DOS) of NaY(1-x)LaxTiO4 (x = 0; 0.25; 0.50 and 0.75) can be predicted theoretically using density functional theory (DFT) approach. The initial calculation is based on the local density approximation (LDA) and generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA+PBE) as exchange-correlation functional. Initial calculations of bandgap energy and DOS were performed on conventional unit cells (1×1×1) for NaYTiO4 and supercells (2×2×1) for NaY(1-x)LaxTiO4 (x = 0.25; 0.50 and 0.75) with the CASTEP Materials Studio program. The calculation results show the bandgap energy (Eg) of 3.447; 3.384; 3.356 and 3.560 eV for x = 0; 0.25; 0.50 and 0.75 with the LDA method. On the other hand, the GGA+PBE method shows an Eg of 3.039; 2.963 and 2.930 eV for x = 0; 0.25; 0.50 and 0.75. DOS character calculation results show that all materials exhibit the Eg transition, which is contributed by the electron transition between the O 2p valence band and Ti 3d conduction band. The substitution of La atoms at the Y atomic position does not produce a band in the middle of Eg (intermediate band) but only widens or narrows the bandgap in NaY(1-x)LaxTiO4 due to distortion of the Ti‒O bond length. This study demonstrates the significant role of La on the electronic properties of NaY(1-x)LaxTiO4 materials for future solar cell applications.


DFT; DOS; bandgap energy; NaYTiO4; first principle calculation.

Full Text:



Akamatsu, H., Fujita, K., Kuge, T., Sen Gupta, A., Togo, A., and Lei, S., 2014. Inversion Symmetry Breaking by Oxygen Octahedral Rotations in the Ruddlesden-Popper NaRTiO4 Family. Physical Review Letters, 112(18), 27‒51. doi: 10.1103/physrevlett.112.187602.

Akamatsu, H., Fujita, K., Kuge, T., Sen Gupta, A., Rondinelli, J.M., Tanaka, I., Tanaka, K., and Gopalan, V., 2019. A-Site Cation Size Effect on Oxygen Octahedral Rotations in Acentric Ruddlesden-Popper Alkali Rare Earth Titanates. Physical Review Letters, 3(6), 065001. doi: 10.1103/PhysRevMaterials.3.065001.

Arrigoni, M., and Madsen, G. K. H., 2018. Comparing the Performance of LDA and GGA Functionals in Predicting the Lattice Thermal Conductivity of Semiconductor Materials: The Case of AlAs. Computational Materials Science 156, 1–15. doi: 10.1016/j.commatsci.2018.10.005.

Assirey, E.A.R., 2019. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharmaceutical Journal, 27(6), 817–829. doi: 10.1016/j.jsps.2019.05.003.

Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., and Refson, K., 2005. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie – Crystalline Materials, 220, 567–570.

Dixit, H., Sainz, R., Cottenier, S., Lamoen, D., and Partoens, B., 2012. Electronic Structure of Transparent Oxides with the Tran-Baha Modified Becke-Johnson Potential. Journal of Physics: Condensed Matter, 24, 7–8. doi: 10.1088/0953-8984/24/20/205503.

Fabien, T., and Peter, B., 2017. Importance of Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory. Journal of Physics: Condensed Matter, 121(17), 3318–325. doi: 10.1021/acs.jpca.7b02882.

Gibin G., Sivasankara, R.E., and Zhiping, L., 2020. Fundamentals of Perovskites Oxides: Synthesis, Structure, Properties and Applications. Oxford: Taylor & Francis Group.

Hamza, M., 2015. Energy Band Theory and Classification Solid. Cairo: Ains Sham University.

Irzaman, H.H., 2017. The Effects of Lanthanum Dopant on the Structural and Optical Properties of Ferroelectric Thin Films. Journal of Rare Earth Element, 139–140. doi: 10.5772/intechopen.69029.

Kibria, T.M., Sony M.S.A.A., and Shamsul, H.F., 2014. A Review: Comparative Studies on Different Generation Solar Cells Technology. Proceedings of 5th International Conference on Environmental Aspects of Bangladesh [ICEAB], 51‒52.

Kohn, M., and Sham, L.J., 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review Journals Archive, 140, 1133.

Miyasaka, T., Kojima, A., Teshima, K., and Shirai, Y., 2009. Organometal Halide Perovskites as Visible Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 6050–6051.

Momma, K., and Izumi, F., 2008. VESTA: A Three-Dimensional Visualization System of Electronic and Structural Analysis. Journal of Applied Crystallography 41, 653–658. doi: 10.1107/S0021889808012016.

Monkhorst, H.J., and Pack, J.D., 1976. Special Points for Brillouin-Zone Integrations, Physical Review. B 13 1976, 5188. doi: 10.1103/PhysRevB.13.5188.

Morrison, F.D., Sinclair, D.C., and West, A.R., 1999. Electrical And Structural Characteristics of Lanthanum-Doped Barium Titanate Ceramics. Journal of Applied Physics, 86 (11), 6355–6366. doi: 10.1063/1.371698.

Park, N.G., 2015. Perovskite Solar Cells: An Emerging Photovoltaic Technology. Materials Today, 18(2), 65–72. doi: 10.1016/j.mattod.2014.07.007.

Parker, W. D., 2013. Density Functional Study of the Structural, Electronic, and Vibrational Properties of β-Ba2TiO4. Physical Review B, 88(24), 245108.

Rickard. A., 2005. The many electron energi in density functional theory. Stockholm: Linkoping University.

Ruddlesden, S.N., and Popper, P., 1958. The Compound Sr3Ti2O7 and Its Structure. Acta Crystallographica, 11, 54–55.

Sachs, M., 1963. Solid state theory. New York: McGraw-Hill Book Company.

Schaak, R. E., and Mallouk, T. E., 2001. KLnTiO4 (Ln=La, Nd, Sm, Eu, Gd, Dy): A New Series of Ruddlesden–Popper Phases Synthesized by Ion-Exchange of HLnTiO4. Journal of Solid State Chemistry, 161(2), 225–232. doi: 10.1006/jssc.2001.9303.

Setyawan, W., and Curtarolo, S., 2010. High-Throughput Electronic Band Structure Calculations: Challenges and Tools. Computational Materials Science, 49(2), 0–312. doi: 10.1016/j.commatsci.2010.05.010.

Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5), 751–767. doi: 10.1107/s0567739476001551.

Sikam, P., Moontragoon, P., Ikonic, Z., Kaewmaraya, T., and Thongbai, P., 2019. The Study of Structural, Morphological and Optical Properties of (Al, Ga)-Doped ZnO: DFT and Experimental Approaches. Applied Surface Science, 480, 621‒635. doi: 10.1016/j.apsusc.2019.02.255.

Sutrisno, H., 2015. Prediksi Energi Celah Pita dalam TiO2-Anatas dan TiO2 Anatas Terdadah Perak (Ag). Chemistry Progress, 8(2), 55‒60.

Tejuca, L.J., and Fierro, J.L.G., 1993. Properties and Applications of Perovskite Type Oxides. New York: Marcel Dekker.

Toda, K., Kurita, S., and Sato, M., 1995. Synthesis and Ionic Conductivity of Novel Layered Perovskite Compounds, AgLaTiO4 and AgEuTiO4. Solid State Ionics, 81(34), 267–271. doi: 10.1016/0167-2738(95)00184-8.

Wulandari, R.D., Muhammady, S., Darma, Y., 2019. Tuning Spin State of Ru4+ Ion and Jahn-Teller Distortion in Cubic SrRuO3 System by Controlling In-Plane Strain: A First-Principle Study. Journal of Physics and Chemistry of Solids, 1–5. doi: 10.1016/j.jpcs.2019.109225.


  • There are currently no refbacks.