Pengaruh Penggantian Kation-A/Sr oleh Ba pada Morfologi Partikel BaxSr(1-x)TiO3 (x = 0; 0,2; 0,4; 0,6; 0,8) Hasil Sintesis dengan Metode Lelehan Garam
Abstract
The Effect of Cation-A/Sr Replacement by Ba on Particle Morphology of BaxSr(1-x)TiO3 (x = 0; 0.2; 0.4; 0.6; 0.8) Synthesized by Molten Salt Method. SrTiO3 is a perovskite structure material that is reported as a potential photocatalyst material. Replacement of a part of the A-cation on a perovskite structure was reported can reduce its bandgap energy. However, the replacement element was also reported to affect the particle morphology. In this study, the effect of A-cation replacement on SrTiO3 (BaxSr(1-x)TiO3 (x = 0, 0.2, 0.4, 0.6, 0.8) to its particle morphology was studied. The sample of BaxSr(1-x)TiO3 (x = 0, 0.2, 0.4, 0.6) were synthesized by molten salt synthesis method (using NaCl salt). The diffractogram showed that the target compound was successfully synthesized but at x = 0.8 still found impurities TiO2 and BaCO3. SEM images showed that Ba-cation presence changes the particle morphology from nearly cubic to polyhedral shape and the particle size also becomes larger.
Keywords
Full Text:
PDFReferences
Abdi, M., Mahdikhah, V., and Sheibani, S., 2020. Visible Light Photocatalytic Performance of La-Fe co-Doped SrTiO3 Perovskite Powder. Optical Materials 102, 1-11. doi: 10.1016/j.optmat.2020.109803.
Dong, P., Hou, G., Xi, X., Shao, R., and Dong, F., 2017. WO3-based Photocatalysts: Morphology Control, Activity Enhancement and Multifunctional Applications. Environmental Science: Nano 4, 539-557. doi: 10.1039/C6EN00478D.
Gao, H., Yang, H., and Wang, S., 2018. Hydrothermal Synthesis, Growth Mechanism, Optical Properties and Photocatalytic Activity of Cubic SrTiO3 Particles for the Degradation of Cationic and Anionic Dyes. Optik 175, 237-249. doi: 10.1016/j.ijleo.2018.09.027.
Hur, S.G., Kim, T.W., Hwang, S.J., and Choy, J.H., 2006. Influences of A- and B-site Cations on the Physicochemical Properties of Perovskite-Structured A(In1/3Nb1/3B1/3)O3 (A= Sr, Ba; B= Sn, Pb) Photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 183, 176-181. doi: 10.1016/j.jphotochem.2006.03.014.
Hussain, T., Junaid, M., and Qayyum, H.A., 2020. Preparation of Ba-doped SrTiO3 Photocatalyst by Sol-Gel Method for Hydrogen Generation. Chemical Physics Letter 754, 1-6. doi: 10.1016/j.cplett.2020.137741.
Januari, T., Aini, N., Barroroh, H., and Prasetyo, A., 2020. The Effect of Synthesis Time to Particle Size of Bi4Ti3O12 which Synthesized using Molten Single Salt NaCl Method. In: IOP Conferencee Series: Earth and Environmental Science, 456, 012013. doi: 10.1088/1755-1315/456/1/012013.
Jesudoss, S.K., Vijaya, J.J., Selvam, N.C.S., Kombaiah, K., Sivachidambaram, M., Adinaveen, T., and Kennedy, L.J., 2016. Effects of Ba Doping on Structural, Morphological, Optical, and Photocatalytic Properties of Self-Assembled ZnO Nanospheres. Clean Technologies and Environmental Policy 18, 729-741. doi: 10.1007/s10098-015-1047-1.
Jiang, D., Sun, X., Wu, X., Shi, L., and Du, F., 2020. Hydrothermal Synthesis of Single-Crystal Cr-doped SrTiO3 for Efficient Visible-Light Responsive Photocatalytic Hydrogen Evolution. Material Research Express 7, 015047. doi: 10.1088/2053-1591/ab660d.
Kato, H., Kobayashi, M., Hara, M., and Kakihana, M., 2013. Fabrication of SrTiO3 Exposing Characteristic Facets using Molten Salt Flux and Improvement of Photocatalytic Activity for Water Splitting. Catalysis Science & Technology 3, 1733. doi: 10.1039/C3CY00014A.
Khare, A., and Chauhan, N., 2015. The Effect of Mg Doping on Structural and Luminescent Properties of Barium Strontium Titanate (BST). Physics Procedia 76, 86 – 91. doi: 10.1016/j.phpro.2015.10.016.
Kimura, T., 2011. Molten Salt Synthesis of Ceramic Powders, Book Chapter Advances in Ceramics Synthesis and Characterization, Processing and Specific Applications. Editor Costas Sikalidis, Intechopen. doi: 10.5772/20472.
Kudo, A., Niishiro, R., Iwase, A., and Kato, H., 2007. Effects of Doping of Metal Cations on Morphology, Activity, and Visible Light Response of Photocatalysts. Chemical Physics 339 104–110. doi: 10.1016/j.chemphys.2007.07.024.
Li, H.L., Du, Z.N., Wang, G.L., and Zhang, Y.C., 2010. Low Temperature Molten Salt Synthesis of SrTiO3 Submicron Crystallites and Nanocrystals in the Eutectic NaCl-KCl. Materials Letters 64, 431–434. doi: 10.1016/j.matlet.2009.11.040.
Mao, C., Wang, G., Dong, X., Zhou, Z., and Zhang, Y., 2007. Low Temperature Synthesis if Ba0.70Sr0.30TiO3 Powders by the Molten Salt Method. Materials Chemistry and Physics 106: 164-167. doi:10.1016/j.matchemphys.2007.06.052.
Özen, M., Mertens, M., Snijkers, F., D’Hondt, H., and Cool, P., 2017, Molten-Salt Synthesis of Tetragonal Micron-sized Barium Titanate from a Peroxo-hydroxide Precursor, Advanced Powder Technology 28(1), 146-154, doi: 10.1016/j.apt.2016.09.007.
Patial, S., Hasija, V., Raizada, P., Singh, P., Singh, A.A.P.K., and Asiri, A.M., 2020, Tunable Photocatalytic Activity of SrTiO3 for Water Splitting: Strategies and Future Scenario. Journal of Environmental Chemical Engineering 8(3), 103791. doi: 10.1016/j.jece.2020.103791.
Puangpetch, T., Sreethawong, T., Yoshikawa, S., and Chavadej, S., 2009. Hydrogen Production from Photocatalytic Water Splitting over Mesoporous-Assembled SrTiO3 Nanocrystal-Based Photocatalysts. Journal of Molecular Catalysis A: Chemical 312, 97–106. doi: 10.1016/j.molcata.2009.07.012.
Tonda, S., Kumar, S., Anjaneyulu, O., and Shanker, V., 2014. Synthesis of Cr and La-codoped SrTiO3 nanoparticles for enhanced photocatalytic performance under sunlight irradiation. Physical Chemistry Chemical Physics 16, 23819. Doi: 10.1039/C4CP02963A.
Wang, W., Moses O. Tade, M.O., and Shao, Z., 2015. Research Progress of Perovskite Materials in Photocatalysis and Photovoltaics-Related Energy Conversion and Environmental Treatment. Chemical Society Reviews 44, 5371‒5408. doi: 10.1039/C5CS00113G.
Wu, Q.S., Liu, J.W., Wang, G.S., Chen, S.F., and Yu, S.H., 2016. A Surfactant-Free Route to Synthesize BaxSr1−xTiO3 Nanoparticles at Room Temperature, Their Dielectric and Microwave Absorption Properties. Science China Materials 59(8), 609–617. doi: 10.1007/s40843-016-5072-5.
Wu, M.C., Chen, W.C., Chan, S.H., and Su, W.F., 2018, The Effect of Strontium and Barium Doping on Perovskite-Structured Energy Materials for Photovoltaic Applications. Applied Surface Science 429, 9-15. doi: 10.1016/j.solener.2018.12.065.
Xue, P., Wu, H., Lu, Y., and Zhu, X., 2018. Recent Progress in Molten Salt Synthesis of Low- Dimensional Perovskite Oxide Nanostructures, Structural Characterization, Properties, and Functional Applications: A Review. Journal of Materials Science & Technology 34(6), 914‒930. doi: 10.1016/j.jmst.2017.10.005.
Yamakata, A., Yeilin, H., Kawaguchi, M., Hisatomi, T., Kubota, J., Sakata, Y., and Domen, K., 2015. Morphology-Sensitive Trapping States of Photogenerated Charge Carriers on SrTiO3 Particles Studied by Time-Resolved Visible to Mid-IR Absorption Spectroscopy: The Effects of Molten Salt Flux Treatments. Journal of Photochemistry and Photobiology A: Chemistry 313 168‒175. doi: 10.1016/j.jphotochem.2015.05.016.
Yan, X., Li, J., and·Zhou, H., 2019, Molten Salts Synthesis and Visible Light Photocatalytic Activity of Crystalline poly(triazine imide) with Different Morphologies. Journal of Materials Science: Materials in Electronics 30, 11706–11713. doi: 10.1007/s10854-019-01531-6.
Refbacks
- There are currently no refbacks.