Kajian Dehidroksilasi Termal Kaolin menjadi Metakaolin menggunakan Analisis Termogravimetri
Abstract
Kaolin merupakan mineral yang banyak dimanfaatkan di berbagai industri. Kaolin dapat diubah menjadi metakaolin yang lebih reaktif melalui proses dehidroksilasi termal. Pada penelitian ini, proses dehidroksilasi termal kaolin dari Bangka Belitung menjadi metakaolin dikaji menggunakan analisis termogravimetri pada rentang suhu 30 – 900 °C dengan laju pemanasan 10 °C/menit dalam lingkungan atmosfer udara. Kaolin mengalami empat tahap dekomposisi dan dehidroksilasi kaolin menjadi metakaolin terjadi pada suhu sekitar 450 – 600 °C. Berdasarkan metode Coats dan Redfern, dehidroksilasi kaolin mengikuti model reaksi order satu dengan energi aktivasi 271,66 kJ/mol dan faktor pre-eksponensial 6,13×1015 s-1. Hasil analisis menggunakan spektroskopi X-ray diffraction (XRD) dan Fourier Transform Infrared (FTIR) pada kaolin setelah dipanaskan pada suhu 550 °C selama 3 jam menunjukkan bahwa sebagian besar kaolin telah berubah menjadi metakaolin.
Study of Thermal Dehydroxylation of Kaolin to Metakaolin using Thermogravimetric Analysis. Kaolin is a mineral that is widely used in various industries. Kaolin can be converted into metakaolin which is more reactive through thermal dehydroxylation processes. In this study, thermal dehydroxylation process of Bangka Belitung kaolin into metakaolin was studied using thermogravimetric analysis in a temperature range of 30 – 900 °C with a heating rate of 10 oC/min in an air atmosphere condition. Kaolin underwent four stages of decomposition and dehydroxylation of kaolin into metakaolin occured at temperatures around 450 – 600 °C. Based on the Coats and Redfern method, kaolin dehydroxylation followed first order reaction model with activation energy of 271.66 kJ/mol and pre-exponential factor of 6.13×1015 s-1. The analysis using X-ray diffraction (XRD) dan Fourier Transform Infrared (FTIR) spectroscopy on kaolin after heating at temperature of 550 °C for 3 hours showed that most of the kaolin had turned into metakaolin.
Keywords
Full Text:
PDFReferences
Cheng, H., Liu, Q., Yang, J., Ma, S., and Frost, R.L., 2012. The Thermal Behavior of Kaolinite Intercalation Complexes – A Review. Thermochimica Acta 545, 1-13. doi: 10.1016/j.tca.2012.04.005.
Cheng, H., Yang, J., Liu, Q., He, J., and Frost, R.L., 2010. Thermogravimetric Analysis–Mass Spectrometry (TG–MS) of Selected Chinese Kaolinites. Thermochimica Acta 507-508, 106-114. doi: 10.1016/j.tca.2010.05.007.
Cristobal, A.G.S, Castello, R., Luengo, M.A.M., and Vizcayno, C., 2010. Zeolites Prepared from Calcined and Mechanically Modified Kaolins: A Comparative Study. Applied Clay Science 49, 239-246. doi: 10.1016/ j.clay.2010.05.012.
Daud, D., 2015. Kaolin sebagai Bahan Pengisi pada Pembuatan Kompon Karet: Pengaruh Ukuran dan Jumlah terhadap Sifat Mekanik-Fisik. Jurnal Dinamika Penelitian Industri 26(1), 41-48. doi: 10.28959/jdpi.v26i1.701.
Davidovits, J., 2008. Geopolymer: Chemistry and Applications, second ed. Institut Géopolymère, Saint-Quentin.
Davidovits, J., 2017. Geopolymers: Ceramic-Like Inorganic Polymers. Journal of Ceramic Science and Technology 8(3), 335-350. doi: 10.4416/JCST2017-00038.
Dellisanti, F. and Valdre, G., 2012. The Role of Microstrain on the Thermostructural Behaviour of Industrial Kaolin Deformed by Ball Milling at Low Mechanical Load. International Journal of Mineral Processing 102-103, 69-77. doi: 10.1016/ j.minpro.2011.09.011.
Erasmus, E., 2016. The Influence of Thermal Treatment on Properties of Kaolin. Hemijska Industrija 70(5), 595-601. doi: 10.2298/HEMIND150720066E.
Febrero, L., Granada, E., Patiño, D., Eguía, P., and Regueiro, A., 2015. A Comparative Study of Fouling and Bottom Ash from Woody Biomass Combustion in A Fixed-Bed Small-Scale Boiler and Evaluation of the Analytical Techniques Used. Sustainability 7, 5819-5837. doi: 10.3390/su7055819.
Georgieva, V., Vlaev, L., and Gyurova, K., 2013. Non-Isothermal Degradation Kinetics of CaCO3 from Different Origin. Journal of Chemistry 2013, 1-12. doi: 10.1155/2013/872981.
Ilic, B.R., Mitrovic, A.A., and Milicic, L.R., 2010. Thermal Treatment of Kaolin Clay to Obtain Metakaolin. Hemijska Industrija 64(4), 351-356. doi: 10.2298/HEMIND100322014I.
Khan, M.I., Khan, H.U., Azizli, K., Sufian, S., Man, Z., Siyal, A.A., Muhammad, N., and ur Rehman, M.F., 2017. The Pyrolysis Kinetics of the Conversion of Malaysian Kaolin to Metakaolin. Applied Clay Science 146, 152-161. doi: 10.1016/j.clay.2017.05.017.
Khawam, A. and Flanagan, D.R., 2005. Role of Isoconversional Methods in Varying Activation Energies of Solid-State Kinetics II. Nonisothermal Kinetic Studies. Thermochimica Acta 436, 101-112. doi: 10.1016/j.tca.2005.05.015.
Mitrovic, A. and Zdujic, M., 2014. Preparation of Pozzolanic Addition by Mechanical Treatment of Kaolin Clay. International Journal of Mineral Processing 132, 59-66. doi: 10.1016/j.minpro.2014.09.004.
Osornio-Rubio, N.R., Torres-Ochoa, J.A., Palma-Tirado, M.L., Jiménez-Islas, H., Rosas-Cedillo, R., Fierro-Gonzalez, J.C., and Martínez-González, G.M., 2016. Study of the Dehydroxylation of Kaolinite and Alunite from a Mexican Clay with DRIFTS-MS. Clay Minerals 51, 55-68. doi: 10.1180/claymin.2016.051.1.05.
Pruett, R.J., 2016. Kaolin Deposits and Their Uses: Northern Brazil and Georgia, USA. Applied Clay Science 131, 3-13. doi: 10.1016/j.clay.2016.01.048.
Rashad, A.M., 2013. Metakaolin as Cementitious Material: History, Scours, Production and Composition – A Comprehensive Overview. Construction and Building Materials 41, 303-318. doi: 10.1016/j.conbuildmat.2012.12.001.
Sahnoune,F., Heraiz, M., Belhouchet, H., Saheb, N., and Redaoui, D., 2017. Thermal Decomposition Kinetics of Algerian Tamazarte Kaolin by Differential Thermal Analysis (DTA). Acta Physica Polonica A 131(3), 382-385. doi: 10.12693/ APhysPolA.131.382.
Stubna, I., Varga, G., and Trník, A., 2006. Investigation of Kaolinite Dehydroxylations is Still Interesting. Építôanyag 58, 6-9. doi: 10.14382/epitoanyag-jsbcm.2006.2.
Valaskova, M., Barabaszova, K., Hundakova, M., Ritz, M., and Plevova, E., 2011. Effects of Brief Milling and Acid Treatment on Two Ordered and Disordered Kaolinite Structures. Applied Clay Science 54, 70-76. doi: 10.1016/ j.clay.2011.07.014.
Varga, G., 2007. The Structure of Kaolinite and Metakaolinite. Építoanyag 59, 6-9. doi: 10.14382/epitoanyag-jsbcm.2007.2.
Wang, H., Li, C., Peng, Z., and Zhang, S., 2011. Characterization and Thermal Behavior of Kaolin. Journal of Thermal Analysis and Calorimetry 105, 157-160. doi: 10.1007/s10973-011-1385-0.
Refbacks
- There are currently no refbacks.