Pengaruh Bentonit terhadap Pembentukan Fasa Polimorf dan Sifat Termal Membran Hibrida Poliviniliden Fluorida/Bentonit

Edi Pramono, Rosid Eka Mustofa, Ozi Adi Saputra, Yulianto Adi Nugroho, Deana Wahyunigrum, Cynthia Linaya Radiman, Sayekti Wahyuningsih, Teguh Endah Saraswati, Sentot Budi Rahardjo, Witri Wahyu Lestari, Dian Maruto Widjonarko, Ari Handono Ramelan

Abstract

Kajian struktur dan degradasi termal pada membran hibrida poliviniliden fluorida (PVDF)/lempung bentonit (BNT) telah dilakukan. Penelitian ini bertujuan mengetahui pengaruh penambahan BNT terhadap pembentukan fasa PVDF dan sifat termalnya. Membran hibrida PVDF/lempung BNT dibuat dengan metode inversi fasa. Membran yang dihasilkan dikarakterisasi dengan attenuated total reflectance fourier transform infrared (ATR-FTIR), x-ray diffraction (XRD), dan differential scanning calorimetry (DSC). Hasil penelitian menunjukkan membran PVDF/BNT memiliki struktur polimorf PVDF fasa α dan β yang terkonfirmasi dari data FTIR dan XRD. Data DSC menunjukkan penurunan nilai titik leleh (Tm) dengan penambahan BNT, dan dengan rentang suhu pelelehan yang lebih kecil. Kristalisasi PVDF terjadi secara isothermal dan adanya BNT menghasilkan titik kristalisasi (Tc) pada suhu yang lebih tinggi dibandingkan membran PVDF murni. Analisis termal dengan DSC memberikan informasi komprehensif pelelehan dan kristalisasi dari polimorf PVDF pada matriks membran.

Effect of Bentonite toward Polymorph Phase Formation and Thermal Properties of Polyvinylidene Fluoride/Bentonite Hybrid Membranes. The study of the structure and thermal properties of PVDF/bentonite (BNT) hybrid membranes has been carried out. This study aims to determine the effect of BNT addition on the phase formation and thermal properties of the PVDF. In this study, PVDF/BNT hybrid membranes were prepared through the phase inversion method. The resulting membrane was characterized by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), x-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results showed that the PVDF/BNT membrane has a PVDF polymorph structure with α and β phases confirmed by FTIR and XRD data. The DSC data showed that the addition of BNT decrease of the melting point (Tm) and with a smaller melting temperature range. PVDF polymorph crystallization occurs isothermally and the presence of BNT produces a crystallization point (Tc) at a higher temperature than pristine PVDF membrane. Thermal analysis with DSC provides comprehensive information on melting and crystallization of PVDF polymorphs in the membrane matrix.

Keywords

thermal analysis; bentonite; phase inversion; hybrid membran; polyvinylidene fluoride-PVDF.

Full Text:

PDF

References

Ahmadian-Alam, L., and Mahdavi, H., 2018. Preparation and Characterization of PVDF-Based Blend Membranes as Polymer Electrolyte Membranes in Fuel Cells: Study of Factor Affecting The Proton Conductivity Behavior. Polymers for Advanced Technologies 29, 2287–2299. doi: 10.1002/pat.4340.

Bai, H., Wang, X., Zhou, Y. and Zhang, L., 2012. Preparation and Characterization of Poly (Vinylidene Fluoride) Composite Membranes Blended with Nano-Crystalline Cellulose. Progress in Natural Science: Materials International 22(3), 250-257. doi: 10.1016/j.pnsc.2012.04.011.

Cai, X., Lei, T., Sun, D., and Lin, L., 2017. A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Advances 7(25), 15382–15389. doi: 10.1039/c7ra01267e.

Cui, Z., Hassankiadeh, N.T., Zhuang, Y., Drioli, E. and Lee, Y.M., 2015. Crystalline Polymorphism in Poly (Vinylidenefluoride) Membranes. Progress in Polymer Science 51, 94-126. doi: 10.1016/j.progpolymsci.2015.07.007.

Fadaei, A., Salimi, A., and Mirzataheri, M., 2014. Structural Elucidation of Morphology and Performance of the PVDF/PEG Membrane. Journal of Polymer Research 21(9), 545. doi: 10.1007/s10965-014-0545-x.

Ike, I. A., Zhang, J., Groth, A., Orbell, J. D., and Duke, M., 2017. Effects of Dissolution Conditions on the Properties of PVDF Ultrafiltration Membranes. Ultrasonics Sonochemistry 39, 716–726. doi: 10.1016/j.ultsonch.2017.05.041.

Lai, C. Y., Groth, A., Gray, S., and Duke, M., 2015. Impact of Casting Conditions on PVDF / nanoclay Nanocomposite Membrane Properties. Chemical Engineering Journal 267, 73–85. doi: 10.1016/j.cej.2014.12.036.

Lee, T. H., Lee, M. Y., Lee, H. D., Roh, J. S., Kim, H. W., and Park, H. B., 2017. Highly Porous Carbon Nanotube/Polysulfone Nanocomposite Supports for High-Flux Polyamide Reverse Osmosis Membranes. Journal of Membrane Science 539, 441–450. doi: 10.1016/j.memsci.2017.06.027.

Liu, Z., Maréchal, P., and Jérôme, R., 1997. Melting and Crystallization of Poly(Vinylidene Fluoride) Blended with Polyamide 6. Polymer 38(20), 5149–5153. doi: 10.1016/S0032-3861(97)00047-5.

Marega, C., and Marigo, A., 2003. Influence of Annealing and Chain Defects on the Melting Behaviour of Poly(Vinylidene Fluoride). European Polymer Journal 39(8), 1713–1720. doi: 10.1016/S0014-3057(03)00062-4.

Park, J. W., Wycisk, R., and Pintauro, P. N., 2015. Nafion/PVDF Nanofiber Composite Membranes for Regenerative Hydrogen/Bromine Fuel Cells. Journal of Membrane Science, 490, 103–112. doi: 10.1016/j.memsci.2015.04.044.

Pérez, E., Angulo, I., Blázquez-Blázquez, E., and Cerrada, M. L., 2020. Characteristics of the Non-Isothermal and Isothermal Crystallization for the β Polymorph in PVDF by Fast Scanning Calorimetry. Polymers 12(11), 1–17. doi: 10.3390/polym12112708.

Polisetti, V., and Ray, P., 2021. Nano SiO2 and TiO2 Embedded Polyacrylonitrile/Polyvinylidene Fluoride Ultrafiltration Membranes: Improvement in Flux and Antifouling Properties. Journal of Applied Polymer Science 138(1), 1–21. doi: 10.1002/app.49606.

Pramono, E., Alfiansyah, R., Ahdiat, M., Wahyuningrum, D., and Radiman, C. L., 2019. Hydrophilic Poly(Vinylidene Fluoride)/Bentonite Hybrid Membranes for Microfiltration of Dyes. Materials Research Express 6, 105376. doi: 10.1088/2053-1591/ab42e9.

Ruan, L., Yao, X., Chang, Y., Zhou, L., Qin, G., and Zhang, X. 2018. Properties and Applications of the β Phase Poly(Vinylidene Fluoride). Polymers 10(3), 1–27. doi: 10.3390/polym10030228.

Santos, W. N. dos, Iguchi, C. Y., and Gregorio, R., 2008. Thermal Properties of Poly(Vinilidene Fluoride) in the Temperature Range from 25 to 210°C. Polymer Testing 27(2), 204–208. doi: 10.1016/j.polymertesting.2007.10.005.

Seraji, S. M., and Guo, Q., 2020. Polymorphism and Crystallization in Poly(Vinylidene Fluoride)/ Poly(ϵ-Caprolactone)–Block–Poly(Dimethylsiloxane)–Block–Poly(ϵ-Caprolactone) Blends. Polymer International 69(2), 173–183. doi: 10.1002/pi.5933.

Tao, M. mi, Liu, F., Ma, B. rong, and Xue, L. xin., 2013. Effect of Solvent Power on PVDF Membrane Polymorphism During Phase Inversion. Desalination 316, 137–145. doi: 10.1016/j.desal.2013.02.005.

Tsonos, C., Pandis, C., Soin, N., Sakellari, D., Myrovali, E., Kripotou, S., Kanapitsas, A., and Siores, E., 2015. Multifunctional Nanocomposites of Poly(Vinylidene Fluoride) Reinforced by Carbon Nanotubes and Magnetite Nanoparticles. Express Polymer Letters 9(12), 1104–1118. doi: 10.3144/expresspolymlett.2015.99.

Yuan, X. S., Guo, Z. Y., Geng, H. Z., Rhen, D. S., Wang, L., Yuan, X. T., and Li, J., 2019. Enhanced Performance of Conductive Polysulfone/MWCNT/PANI Ultrafiltration Membrane in an Online Fouling Monitoring Application. Journal of Membrane Science 575, 160–169. doi: 10.1016/j.memsci.2019.01.010

Zhang, Y. Y., Jiang, S. L., Yu, Y., Xiong, G., Zhang, Q. F., and Guang, G. Z., 2012. Phase Transformation Mechanisms and Piezoelectric Properties of Poly(Vinylidene Fluoride)/Montmorillonite Composite. Journal of Applied Polymer Science 123(5), 2595–2600. doi: 10.1002/app.34431.

Zheng, J., He, A., Li, J., and Han, C. C., 2007. Polymorphism Control of Poly(Vinylidene Fluoride) Through Electrospinning. Macromolecular Rapid Communications 28(22), 2159–2162. doi: 10.1002/marc.200700544.

Zhu, J., Zhou, S., Li, M., Xue, A., Zhao, Y., Peng, W., and Xing, W., 2020. PVDF Mixed Matrix Ultrafiltration Membrane Incorporated with Deformed Rebar-like Fe3O4–Palygorskite Nanocomposites to Enhance Strength and Antifouling Properties. Journal of Membrane Science 612, 118467. doi: 10.1016/j.memsci.2020.118467.

Refbacks

  • There are currently no refbacks.