Identifikasi Mekanisme Molekuler Senyawa Ftalosianina sebagai Kandidat Photosensitizer pada Terapi Fotodinamika secara In Silico
Abstract
Bakteri patogen seperti Pseudomonas aeruginosa membutuhkan zat besi untuk dapat mempertahankan kelangsungan hidupnya. HasAp merupakan suatu protein yang dihasilkan oleh bakteri patogen sebagai sumber zat besi tersebut. Protein HasAp selanjutnya akan berikatan dengan protein membran luar yaitu HasR untuk dapat meneruskan sinyal pada sel bakteri. Penyerapan zat besi pada bakteri patogen ini dapat menjadi strategi pengembangan metode terapi dalam mengendalikan dan mencegah penyakit infeksi yang disebabkan oleh bakteri patogen Pseudomonas aeruginosa, salah satunya dengan memanfaatkan ftalosianina sebagai photosensitizer pada terapi fotodinamika. Penelitian ini bertujuan untuk mengidentifikasi, mengevaluasi, dan mengeksplorasi mekanisme aksi senyawa ftalosianina terhadap protein HasAp, serta pengaruhnya pada bagian sisi aktif HasR dengan menggunakan studi in silico. Studi ligan-protein docking dilakukan dengan menggunakan perangkat lunak MGLTools 1.5.6 yang dilengkapi dengan AutoDock 4.2 untuk mengamati afinitas dan interaksi molekuler antara molekul senyawa Fe-ftalosianina (Fe-Pc) dan Ga-ftalosianina (Ga-Pc) terhadap makromolekul protein HasAp. Selanjutnya, studi protein-protein docking dilakukan terhadap sistem kompleks ligan-protein untuk mengamati pengaruhnya terhadap area pengikatan dari makromolekul protein HasR dengan menggunakan perangkat lunak PatchDock. Berdasarkan hasil ligan-protein docking, senyawa Fe-ftalosianina (Fe-Pc) memiliki afinitas paling baik terhadap kedua protein HasAp, yaitu dengan nilai masing-masing -68,45 kJ/mol dan -69,16 kJ/mol. Kemudian, hasil studi protein-protein docking antara kompleks senyawa Fe-ftalosianina (Fe-Pc) dan protein HasAp terhadap protein HasR memiliki nilai Atomic Contact Energy (ACE) positif, yaitu 556,56 kJ/mol. Perbedaan struktur molekul senyawa ftalosianina terbukti mampu mempengaruhi mekanisme aksi terhadap protein target, sehingga hasil studi ini dapat menjadi acuan dalam mendesain struktur senyawa ftalosianina sebagai kandidat photosensitizer dalam terapi fotodinamika.
Identification of the Molecular Mechanism of Phthalocyanine Compounds as Photosensitizer Candidates in Photodynamic Therapy by In Silico. Pathogenic bacteria including Pseudomonas aeruginosa need iron elements to be able to maintain their survival. HasAp is a protein produced by pathogenic bacteria as a source of iron. The HasAp protein will then bind to the outer membrane protein, namely HasR, to be able to forward signals in bacterial cells. Absorption of iron in these pathogenic bacteria can be a strategy for developing therapeutic methods in controlling and preventing infectious diseases caused by pathogenic bacteria Pseudomonas aeruginosa, one of which is by using phthalocyanine as a photosensitizer in photodynamic therapy. This study aims to identify, evaluate, and explore the mechanism of action of phthalocyanine compounds against HasAp proteins, and their effects on the active site of HasR through in silico studies. Ligand-protein docking studies were performed using MGLTools 1.5.6 with AutoDock 4.2 to observe the affinity and molecular interactions between molecules of Fe-phthalocyanine (Fe-Pc) and Ga-phthalocyanine (Ga-Pc) against HasAp protein macromolecules. Furthermore, a protein-protein docking study of the ligand-protein complexes system was simulated to observe its effect on the binding area of the HasR protein macromolecules using PatchDock. Based on the ligand-protein docking results, Fe-phthalocyanine (Fe-Pc) compounds have the best affinity for both HasAp proteins, with a binding energy value of -68.45 kJ/mol and -69.16 kJ/mol, respectively. The protein-protein docking study results between the complex compound Fe-phthalocyanine (Fe-Pc) and HasAp protein against HasR protein have a positive Atomic Contact Energy (ACE) value, with an ACE value of 556.56 kJ/mol. Differences in the molecular structure of phthalocyanine compounds are proven to be able to influence the mechanism of action against the target protein. Therefore, the results of this study can be a reference in designing the structure of phthalocyanine compounds as photosensitizer candidates in photodynamic therapy.
Keywords
Full Text:
PDFReferences
Aruleba, R.T., Adekiya, T.A., Oyinloye, B.E., and Kappo, A.P., 2018. Structural studies of predicted ligand binding sites and molecular docking analysis of Slc2a4 as a therapeutic target for the treatment of cancer. International Journal of Molecular Sciences 19(2), 1 ‒ 15. doi : 10.3390/ijms19020386.
Cassat, J. E. and Skaar, E. P., 2013. Iron in Infection and Immunity. Cell Host Microbe 13(5), 509 ‒ 519. doi : 10.1016/j.chom.2013.04.010
Denis, T.G.S. and Hamblin, M.R., 2011. An introduction to photoantimicrobials: photodynamic therapy as a novel method of microbial pathogen eradication. Science against Microbial Pathogens: Communicating
Current Research and Technological Advances, 675 ‒ 683.
Forli, S., Huey, R., Pique, M.E., Sanner, M., Goodsell, D.S., and Olson, A.J., 2016. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 11(5), 905 ‒ 919. doi: 10.1038/nprot.2016.051.
Huang, H., Song, W., Riefel, J., and Lovell, J.F., 2015. Emerging applications of porphyrins in photomedicine. Frontiers of Physics 3(23), 1 ‒ 15. doi: 10.3389/fphy.2015.00023.
Krieg, S., Huche, F., Diederichs, K., Izadi-Pruneyre, N., Lecroisey, A., Wandersman, C., Delepelaire, P., and Welte, W., 2009. Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proceedings of the National Academy of Sciences of the United States of America 106(4), 1045 ‒ 1050. doi: 10.1073/pnas.0809406106.
Kurniawan, F., Miura, Y., Kartasasmita, R.E., Yoshioka, N., Mutalib, A., and Tjahjono, D.H., 2018. In silico study, synthesis, and cytotoxic activities of porphyrin derivatives. Pharmaceuticals 11(1), 1 ‒ 18. doi: 10.3390/ph11010008.
Letoffe, S., Deniau, C., Wolff, N., Dassa, E., Delepelaire, P., Lecroisey, A., and Wandersman, C., 2001. Haemophore-mediated bacterial haem transport: evidence for a common or overlapping site for haem-free and haem-loaded haemophore on its specific outer membrane receptor. Molecular Microbiology 41(2), 439 ‒ 450. doi: 10.1046/j.1365-2958.2001.02530.x.
Letoffe, S., Redeker, V., dan Wandersman, C., 1998. Isolation and Characterization of an Extracellular Haem-Binding Protein from Pseudomonas aeruginosa that shares function and sequence similarities with
the Serratia marcescens HasA Haemophore. Molecular Microbiology 28(6), 1223 ‒ 1224. doi: 10.1046/j.1365-2958.1998.00885.x.
Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J., 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14), 1639 ‒ 1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.
Prabhu, D.S. and Rajeswari, V.D., 2016. In silico docking analysis of bioactive compounds from Chinese medicine Jinqi Jiangtang Tablet (JQJTT) using Patch Dock. Journal of Chemical and Pharmaceutical Research 8(5), 15 ‒ 21.
Shirataki, C., Shoji, O., Terada, M., Ozaki, S., Sugimoto, H., Shiro, Y., and Watanabe, Y., 2014. Inhibition of Heme Uptake in Pseudomonas aeruginosa by its Hemophore (HasAp) Bound to Synthetic Metal Complexes. Angewandte Chemie International Edition 126(11), 2862 ‒ 2866. doi: 10.1002/anie.201307889.
Shisaka, Y., Iwai, Y., Yamada, S., Uehara, H., Tosha, T., Sugimoto, H., Shiro, Y., Stanfield, J.K., Ogawa, K., Watanabe, Y., and Shoji, O., 2019. Hijacking the Heme Acquisition System of Pseudomonas aeruginosa for the Delivery of Phthalocyanine as an Antimicrobial. ACS Chemical Biology 14(7), 1637 ‒ 1642. doi: 10.1021/acschembio.9b00373.
Staicu, A., Pascu, A., Nuta, A., Sorescu, A., Raditoiu, V., and Pascu, M.L., 2013. Studies about phthalocyanine photosensitizers to be used in photodynamic therapy. Romanian Reports in Physics 65(3), 1032 ‒ 1051.
Sugden, R., Kelly, R., and Davies, S., 2016. Combatting Antimicrobial Resistance Globally. Nature Microbiology 1(10), 16187 ‒ 16192. doi: 10.1038/nmicrobiol.2016.187.
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., et al., 2018. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. The Lancet Infectious Diseases 18(3), 318 ‒ 327. doi:10.1016/S1473-3099(17)30753-3.
Refbacks
- There are currently no refbacks.