Pengaruh Pemurnian Terhadap Kualitas dan Kandungan Skualen Minyak Biji Kemangi Hutan (Ocimum gratissimum L.)

Hartati Soetjipto, Yoga Andika Putra, A. Ign Kristijanto

Abstract

Ocimum gratissimum L. atau kemangi hutan merupakan salah satu jenis tanaman yang banyak dimanfaatkan dalam bidang pengobatan tradisional. Biji dari tanaman kemangi hutan diduga mengandung senyawa aktif antioksidan berupa skualena yang banyak digunakan dalam industri farmasi. Sumber utama senyawa skualena adalah minyak hati ikan hiu, kenyataan ini memperkuat alasan perburuan ikan hiu semakin marak. Skualen nabati yang bisa ditemukan pada beberapa jenis tumbuhan menjadi salah satu alternatif untuk mengurangi penggunaan skualena dari minyak hati ikan hiu. Penelitian ini bertujuan untuk menentukan hasil rendemen, sifat fisiko-kimia serta menganalisa komponen penyusun minyak biji kemangi hutan dengan metode Gas Chromatography-Mass Spectrometry (GC-MS). Tahapan penelitian meliputi ekstraksi minyak biji kemangi hutan menggunakan alat soxhlet dengan pelarut heksana dilanjutkan dengan proses pemurnian yang meliputi degumming dan netralisasi. Tahap terakhir berupa analisa GCMS minyak hasil ekstraksi. Hasil penelitian menunjukkan bahwa rendemen minyak biji kemangi hutan setelah pemurnian diperoleh sebesar 5,106 ± 0,10%, berwarna kuning pucat berbau khas kemangi hutan, kadar air minyak 0,06%; massa jenis minyak 0,84 g/ml; bilangan asam 0,416 ± 0 mg KOH/g minyak; bilangan peroksida 0,028 ± 0 meq O2/g minyak; dan bilangan penyabunan 219,648 ± 2,608 mg KOH/g. Sifat fisikokimia tersebut telah memenuhi kriteria SNI. Hasil analisis GC-MS menunjukkan bahwa minyak biji kemangi hutan didominasi oleh  empat komponen utama yaitu skualena (58,85%), asam propanedioat (16,69%),  asam palmitat (14,91%), dan metil heksanoat (9,55%). Pemurnian minyak biji kemangi hutan meningkatkan kandungan skualena dari 1,07% menjadi 58,85%. 

The Effect of Purification on The Quality and Content of Forest Basil Seed Oil (Ocimum gratissimum L.). O. gratissimum L. or forest basil is a plant that is widely used in traditional medicine. Forest basil’ seeds suspected contain active antioxidant compounds that have the shape of squalene, and it is widely used in the pharmaceutical industry. The main source of the squalene compound is shark liver oil; this fact reinforces the reason for shark hunting increasingly widespread. Plant Squalene, which can be found in many plant species, is one of an alternative to reduce the use of squalene from shark liver oil. The aims of this work are to determine the yield, physicochemical properties and to analyze the components of forest basil’seed oil using Gas Chromatography-Mass Spectrometry (GC-MS). The stages of this work included extraction of forest basil seeds using Soxhlet extractor in hexane solvent, followed by a refining process includes degumming and neutralization. The final step is analyzed forest’ basil seed oil obtained using GC-MS. The results showed that the yield of forest basil seed oil obtained in the amount of 5.106 ± 0.10 %, a pale yellow color, with a specific aroma of basil forests, the water content of 0.06% oil; oil density 0.84 g / ml; an acid number of 0.416 ± 0 mg KOH / g of oil; peroxide number of 0.028 ± 0 meq O2 / g of oil; and a saponification number of 219.648 ± 2.608 mg KOH / g of oil. The physicochemical properties have fulfilled SNI criteria. GC-MS analysis resulted that forest basil’ seeds oil are dominated by four main components, namely squalene (58.85%), propanedioic acid (16.69%), palmitic acid (14.91%), and methyl hexanoate (9.55%). Purification forest basil seed oil increases squalene of 1.07% to 58.85%.

Keywords

basil, extraction, purification, squalene KemenRistek Dikti

Full Text:

PDF

References

Abdillah, M. N., Musfiroh, I., and Indriyati, W., 2018. Analisis Senyawa Antioksidan Pada Minyak Biji Labu Kuning ( Cucurbita pepo L .). Taksonomi Tumbuhan Jurusan Biologi Fakultas MIPA Universitas Padjadjaran 1(2), 53–61.

American Oil Chemists’ Society Champaign. 1989. Official Methods and Recommended Practices of the American Oil Chemists’ Society.

American Oil Chemists’ Society Champaign. 1997a. Official Methods and Recommended Practices of the American Oil Chemists’ Society (p. Ca 5a-40).

American Oil Chemists’ Society Champaign. 1997b. Official Methods and Recommended Practices of the American Oil Chemists’ Society (p. Cd 8-53).

American Oil Chemists’ Society Champaign. 1998a. Official Methods and Recommended Practices of the American Oil Chemists’ Society (p. Aa 4-38).

American Oil Chemists’ Society Champaign. 2003. Official Methods and Recommended Practices of the American Oil Chemists’ Society (p. Cd 3-25).

American Oil Chemists’ Society Champaign.(2005. Official Methods and Recommended Practices of the American Oil Chemists’ Society (p. Cc 10A-25).

Azis, T., Cindo R. K. N., and Fresca A., 2009. Pengaruh Pelarut Heksana dan Etanol, Volume Pelarut, dan Waktu Ekstraksi terdapat Hasil Ekstraksi Minyak Kopi. Jurnal Teknik Kimia 16(1), 1-8.

Blasco, L., Duracher, L., Forestier, J.P., Vian, L. and Marti‐Mestres, G., 2006. Skin Constituents as Cosmetic Ingredients. Part I: A Study of Bio‐mimetic Monoglycerides Behavior at the Squalene‐Water Interface by the “Pendant Drop” Method in a Static Mode. Journal of dispersion science and technology 27(6), 799-810. doi : https://doi.org/10.1080/01932690500482137.

Bondioli, P., Mariani, C., Lanzani, A., Fedeli, E., and Muller, A., 1993. Squalene recovery from olive oil deodorizer distillates. Journal of the American Oil Chemists Society 70(8), 763–766. doi : https://doi.org/10.1007/BF02542597.

Daniel., 2016. Peningkatan Kepolaran Asam Linoleat Dalam Bentuk Amida Menjadi N-etanol-9,10,12,13,15,16 Heksahidroksi Oleil-Amida. Jurnal Kimia Mulawarman Volume 13 Nomor 2 Mei 2016.

Daryono E. D., Pursitta A. T., and Isnaini A., 2014. Ekstraksi Minyak Atsiri Pada Tanaman Kemangi Dengan Pelarut n-Heksana. Jurnal Teknik Kimia 9(1), 1-7.

Erizal., 2005. Sintesis dan Karakterisasi Squalene- TMPT Hasil Iradiasi Gamma. Prosiding Simposium Nasional Polimer V, 105–110.

Fox, C. B., 2009. Squalene Emulsions for Parenteral Vaccine and Drug Delivery. Molecules 14(9), 3286–3312. doi : https://doi.org/10.3390/molecules14093286.

Gunes, F. E., 2013. Medical use of squalene as a natural antioxidant. Journal of Marmara University Institute of Health Sciences 3(4), 220-228. doi : https://doi.org/10.5455/musbed.20131213100404.

Gusti, R.E.P. and Zulnely, Z., 2015. Pemurnian Beberapa Jenis Lemak Tengkawang Dan Sifat Fisiko Kimia. Jurnal Penelitian Hasil Hutan 33(1), 61-68. doi : https://doi.org/10.20886/jphh.2015.33.1.61-68

Hashemi, G. H., Ziaee, E., Eskandari, M. H., and Hosseini, S. M. H., 2017. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydrate Polymers 166, 93–103. doi : https://doi.org/10.1016/j.carbpol.2017.02.103

Ketaren, S., 1986. Pengantar Teknologi Minyak dan Lemak Pangan. UI-Press., Jakarta

Kurniawan, A., Chandra, Indraswati, N., and Mudjijati., 2008. Ekstraksi Minyak Kulit Jeruk Dengan Metode Distilasi, Pengepresan dan Leaching. Widya Teknik 7(1), 15–24. doi : https://doi.org/10.33508/wt.v7i1.1257.

Mardani, S., Ghavami, M., Heidary-Nasab, A., and Gharachorloo, M., 2016. the Effects of Degumming and Neutralization on the Quality of Crude Sunflower and Soyabean Oils. Journal of Food Biosciences and Technology 6(2), 47–52.

Matasyoh, L. G., Matasyoh, J. C., Wachira, F. N., Kinyua, M. G., Thairu Muigai, A. W., and Mukiama, T. K., 2007. Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in Eastern Kenya. African Journal of Biotechnology 6(6), 760–765. doi : https://doi.org/10.5897/AJB2007.000-2085.

Munawaroh, S., and Astuti, P., 2010. Ekstraksi Minyak Daun Jeruk Purut (Citrus hystrix D.C.) Dengan Pelarut Etanol dan N-Heksana. Jurnal Kompetensi Teknik 2(1), 73–78.

Musbah, M., Suseno, S. H., and Uju., 2017. Kombinasi Minyak Ikan Sardin dan Cucut Kaya Omega 3. Jurnal Pengolahan Hasil Perikanan Indonesia 20(1), 45–52. doi : https://doi.org/10.17844/jphpi.2017.20.1.44.

Mutaqin, A., Sayekti, E., and Destiarti, L., 2013. Identifikasi Hasil Reaksi Adisi Nukleofilik Sianida Pada Gugus Karbonil Sitronelal Menggunakan Pereaksi Kalium Sianida. Jurnal Kimia Katulistiwa 2(1), 38-41.

Prakash, J. and Gupta, S. K., 2000. Chemopreventive activity of Ocimum sanctum seed oil. Journal of Ethnopharmacology 72(1-2), 29–34. doi : 10.1016 / S0378-8741 (00) 00194-X.

Schneider, S., 2016. Quality Analysis of Extra Virgin Olive Oils – Part 5 Nutritive Benefits – Determination of Squalene in Virgin Olive Oil. Agilent Technologies, Inc. Waldbronn, Germany. doi : 10.1007 / s12161-016-0697-x

SNI 01-3555-1998 dalam Standar Nasional Indonesia, Cara Uji Minyak dan Lemak.

Soeka, Y. S., 2008. Extraction of Vegetable Oil by Fermentation. Berita Biologi 9(3), 325–332.

Soetjipto, H., Anggreini, T., and Cahyanti, M. N., 2018. Profil Asam Lemak Dan Karakterisasi Minyak Biji Labu Kuning (Cucurbita moschata D.). Jurnal Kimia Dan Kemasan 40(2), 79-86. doi : https://doi.org/10.24817/jkk.v40i2.3797 (a)

Soetjipto, H., Tindage, A., and Cahyanti, M. N., 2018. Pengaruh Pemurnian Degumming Dan Netralisasi Terhadap Profil Minyak Biji Labu Kuning (Cucurbita Moschata D.). Jurnal Konversi Universitas Muhammadiyah Jakarta 7(1), 49–56. doi : https://doi.org/10.24853/konversi.7.1.8 (b)

Sukandar, D., Hermanto, S., Amelia, E. R., and Novianti, C. P. 2017. Karakterisasi Fraksi Aktif Antioksidan dari Ekstrak Etanol Biji Kemangi (Ocimum Basilicum L.). Jurnal Kimia VALENSI 1(1), 39–49. doi : https://doi.org/10.15408/jkv.v0i0.3598

Sulistiarini, D., 1999. Ocimum gratissimum L. In: Oyen, L.P.A., Dung Nguyen Xuan (Editors): Plant Resources of South-East Asia No. 19 (1). Medicinal and poisonous plants 1. pp. 140-141.

Tarigan, D., 2016. Peningkatan Kepolaran Asam Linoleat Dalam Bentuk Amida Menjadi N-etanol-9, 10, 12, 13, 15, 16 Heksahidroksi Oleil-Amida. Jurnal Kimia Mulawarman 13(2), 109-113.

Refbacks

  • There are currently no refbacks.