Pengaruh Konsentrasi Natrium Silikat Terhadap Laju Korosi Paduan Aluminium dalam Lingkungan Natrium Klorida 3,5%

Rukiah Rukiah, Diding Mandala Putra, Solihudin Solihudin, Yeni Wahyuni Hartati, Atiek Rostika Noviyanti

Abstract

Korosi merupakan proses penurunan kualitas logam akibat reaksi logam dengan lingkungannya. Air laut merupakan salah satu sistem yang korosif karena tingginya kadar ion klorida. Ion silikat dengan konsentrasi optimum mampu memperlambat laju korosi pada logam, seperti aluminium. Penelitian ini menguji pengaruh ion silikat dalam larutan natrium klorida 3,5% terhadap laju korosi aluminium yang diuji dengan metode potensiostat dan dihitung dengan Ekstrapolasi Tafel. Pengaruh konsentrasi ion silikat terhadap laju korosi diamati pada variasi konsentrasinya yaitu 0, 25, 50, 75, dan 100 mM. Konsentrasi optimum natrium silikat untuk menurunkan laju korosi adalah 25 mM,  laju korosi turun dari 0,0118 menjadi 0,0084 mm/tahun. Sebaliknya, penambahan konsentrasi natrium silikat hingga 100 mM,  dapat meningkatkan laju korosi menjadi 0,101 mm/tahun.

The Effect of Sodium Silicate Concentration on the Corrosion Rate of Aluminum Alloy in Sodium Chloride 3.5%. Corrosion is a process of decreasing the quality of metals due to the reaction of metals with their environment. Seawater is one of the corrosive systems because of the high levels of chloride ions. Silicate ions with optimum concentrations can slow the rate of corrosion in metals, such as aluminum. This research examines the effect of silicate ions on the aluminum corrosion rate in a solution of sodium chloride 3.5%, tested by the potentiostat method and calculated by Tafel extrapolation. The effect of silicate ion concentration on the corrosion rate was observed in various concentrations of 0, 25, 50, 75, and 100 mM. The optimum concentration of sodium silicate in reducing the corrosion rate is 25 mM, in which the corrosion rate drops from 0.0118 to 0.0084 mm/year. Conversely, increasing the concentration of sodium silicate to 100 mM increased the corrosion rate to 0.101 mm/year.

Keywords

aluminum; corrosion; sodium silicate

Full Text:

PDF

References

Fontana, M. 1987. Corrosion Engineering. McGraw-Hill‏, New York.

Gaggiano, R., Moriamé, P., Biesemans, M., De Graeve, I., and Terryn, H. 2011. Mechanism of Formation of Silicate Thin Films on Porous Anodic Alumina. Surface and Coatings Technology 205(21–22), 5210–5217. doi: 10.1016/j.surfcoat.2011.05.029.

Garcia-Cerda, L.A., Mendoza-Gonzales, O., Perez-Robles, J.F., and Gonzalez-Hernandez, J. 2002. Structural Characterization and Properties of Colloidal Silica Coatings on Copper Substrates. Materials Letters 56(October), 450–453. doi: 10.1021/nl080190s.

Kumar, S., Sangwan, P., V, D.R.M., and Bidra, S. 2013. Utilization of Rice Husk and Their Ash : A Review. Journal of Chemical and Environmental Sciences 1(5), 126–129.

Lopez-Garrity, O. and Frankel, G.S. 2014. Corrosion Inhibition of AA2024-T3 by Sodium Silicate. Electrochimica Acta 130, 9–21. doi: 10.1016/j.electacta.2014.02.117.

Roberge, P.R. 2008. Corrosion Engineering Principles and Practice. first. P. R. Roberge, ed. McGraw-Hill, New York.

Roberge, P.R. and Pierre, R. 1999. Handbook of Corrosion Engineering. McGraw-Hill, New York.

Sastri, V.S., Ghali, E., and Elboujdaini, M. 2012. Corrosion Prevention and Protection: Practical Solutions. McGraw-Hill, New York.

Wang, D. and Bierwagen, G.P. 2009. Coatings Sol – Gel Coatings on Metals for Corrosion Protection. Progress in Organic 64, 327–338. doi: 10.1016/j.porgcoat.2008.08. 010.

Refbacks

  • There are currently no refbacks.