Virtual Screening Kandungan Senyawa Kipas Laut (Gorgonia mariae) sebagai Antiasma
Abstract
Kipas laut (Gorgonia mariae) telah digunakan masyarakat Maluku secara turun temurun sebagai obat asma. Kandungan metabolit sekunder yang paling dominan dalam kipas laut adalah sterol, dimana memiliki aktivitas terapi melalui efek sinergisme antara senyawa metabolit dengan polivalent activity. Pengujian kipas laut sebagai anti-asma belum pernah dilaporkan sebelumnya. Oleh karena itu, perlu dilakukan virtual screening menggunakan metode in silico pada komponen sterol kipas laut sebagai tahap awal dalam menentukan efektivitas terapi anti-asma dengan memprediksi nilai ikatan energi bebas (ΔG), konstanta inhibisi (Ki), dan interaksi residu asam amino menggunakan Autodock Tools 4.2 dan Discovery Studio 2016 Client®. Keamanan dan efektivitas kandidat obat dievaluasi menggunakan parameter dari Lipinski Rule of Five dan pre-ADMET. Hasil penelitian menunjukkan bahwa konstanta inhibisi dan ikatan energi bebas (Ki; ΔG) dari komponen senyawa kipas laut dapat diurutkan secara potensial yaitu 4,24-dimetil kolestanol (0,809; -12,40) > 24-metil-22-dehidrokolesterol (0,864; -12,36) > 23-demetil gorgosterol (1,74; -11,95) > 4,24-dimetil-22-dehidrokolestanol (1,89; -11,90). Residu asam amino yang berperan penting dalam aktivitas inhibisi hCHIT1 adalah 213-ASP. Semua komponen senyawa uji memiliki nilai log P lebih dari 5 yang menunjukkan bahwa kelarutan dan toksisitas perlu diperhatikan. Evaluasi distribusi pre-ADMET berdasarkan nilai dari pengikatan protein plasma menunjukan bahwa senyawa uji dapat berdifusi menembus membran plasma dan berinteraksi sesuai target farmakologi. Selain itu, hasil parameter uji toksisitas menunjukkan bahwa senyawa 23-demetil gorgosterol dan 4,24-dimetil-22-dehidrokolestanol memiliki potensi sebagai anti-asma.
Virtual Screening of the Compounds in Gorgonians (Gorgonia mariae) as anti-asthma. The people of Maluku have used Kipas laut (G. mariae) for generations as an asthma medicine. The secondary metabolite that is most dominant in kipas laut is sterols, which have therapeutic activity through the synergistic effect between metabolite compounds and polyvalent activity. Anti-asthma activity of kipas laut has never been reported. Therefore, it is necessary to do virtual screening using the in silico method on the sterol component of kipas laut as a first step in determining the effectiveness of anti-asthma therapy by predicting the value of free energy bonds (ΔG), constant inhibition (Ki), and interactions of amino acid residues using Autodock Tools 4.2 and Discovery Studio 2016 Client®. The effectiveness and safety of prospective drugs are evaluated using the Lipinski Rule of Five and pre-ADMET. The results showed that the value of inhibition constants and free energy bonds (Ki; ΔG) on the compound of kipas laut that was potentially sorted was 4.24-dimethyl cholestanol (0.809; -12.40) > 24-methyl-22-dehydrocholesterol (0.864; -12.36) > 23-demethyl gorgosterol (1.74; -11.95) > 4.24-dimethyl-22-dehidrokolestanol (1.89; -11.90). The crucial residues of amino acids is 213-ASP, which play a significant role in hCHIT1 inhibitory activity. All components of the test compound have a log P value of more than five, which indicates that solubility and toxicity need to be considered. Evaluation of the pre-ADMET based on the value of plasma protein binding shows that the test compound can diffuse through the plasma membrane and interact according to pharmacological targets. In addition, the results of the toxicity test showed that 23-demethyl gorgosterol and 4.24-dimethyl-22-dehidrokolestanol compounds have potential as anti-asthma.
Keywords
Full Text:
PDFReferences
Bargagli, E., Bianchi, N., Margollicci, M., Olivieri, C., Luddi, A., Coviello, G., Grosso, S., & Rottoli, P. (2008). Chitotriosidase and soluble IL-2 receptor: Comparison of two markers of sarcoidosis severity. Scandinavian Journal of Clinical and Laboratory Investigation, 68(6), 479–483. https://doi.org/10.1080/00365510701854975
Bissantz, C., Folkers, G., & Rognan, D. (2000). Protein-based virtual screening of chemical databases: Evaluation of different docking/scoring combinations. Journal of Medicinal Chemistry, 43(25), 4759–4767. https://doi.org/10.1021/jm001044
Bos, J. D., & Meinardi, M. M. H. M. (2000). The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology, 9(3), 165–169. https://doi.org/10.1034/j.1600-0625.2000.009003165.x
Cho, S. J., Weiden, M. D., & Lee, C. G. (2015). Chitotriosidase in the pathogenesis of inflammation, interstitial lung diseases, and COPD. Allergy, Asthma & Immunology Research, 7(1), 14–25. https://doi.org/10.4168/aair.2015.7.1.14
Cooper, E. L., Hirabayashi, K., Strychar, K. B., & Sammarco, P. W. (2014). Corals and their potential applications to integrative medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–9. https://doi.org/10.1155/2014/184959
Cuzzolin, A., Sturlese, M., Malvacio, I., Ciancetta, A., & Moro, S. (2015). DockBench: An integrated informatic platform bridging docking validation and virtual screening simulations. Molecules, 20(6), 9977–9993. https://doi.org/10.3390/molecules20069977
Czyrski, A., & Kupczyk, B. (2013). Determination of partition coefficient of 6-mercaptopurine derivatives by thin-layer chromatography. Journal of Chemistry, 2013, 1–4. https://doi.org/10.1155/2013/419194
Deghrigue, M., Festa, C., Ghribi, L., Auria, M. V. D., De, S., Jannet, H. B., & Bouraoui, A. (2015). Anti-inflammatory and analgesic activities with gastroprotective effect of compounds from Eunicella singularis. Asian Pacific Journal of Tropical Medicine, 8(8), 606–611. https://doi.org/10.1016/j.apjtm.2015.07.019
Depkes RI. (2015). Profil Kesehatan Provinsi Maluku. Departemen Kesehatan Republik Indonesia.
Gao, Y., Gesenberg, C., & Zheng, W. (2017). Developing solid oral dosage forms: Pharmaceutical theory and practice (2nd ed., Chapter 17). Academic Press. https://doi.org/10.1016/B978-0-12-802447-8.00017-0
Godfrey, S. (1985). What is asthma? Archives of Disease in Childhood, 60(11), 997–1000. https://doi.org/10.1136/adc.60.11.997
Grolmusz, V. (2014). Evaluating genetic algorithms in protein–ligand docking. Journal of Medicinal Chemistry, 51(12), 3499–3506.
Hongmao, S. (2016). A practical guide to rational drug design (Chapter 6). Elsevier. https://doi.org/10.1016/B978-0-08-100098-4.00006-5
Kim, R., & Skolnick, J. (2008). Assessment of programs for ligand binding affinity prediction. Journal of Computational Chemistry, 29(8), 1316–1331. https://doi.org/10.1002/jcc.20893
Kokke, W. C. M. C., Bohlin, L., Fenical, W., & Djerassi, C. (1982). Novel dinoflagellate 4α-methylated sterols from Caribbean gorgonians. Phytochemistry, 21(4), 881–887. https://doi.org/10.1016/0031-9422(82)80085-X
Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: Comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565. https://doi.org/10.1021/jm0302997
Létuvé, S., Kozhich, A., Humbles, A., et al. (2010). Lung chitinolytic activity and chitotriosidase in COPD. American Journal of Pathology, 176(2), 638–649. https://doi.org/10.2353/ajpath.2010.090455
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Marchbank, D. H., Berrue, F., & Kerr, R. G. (2012). Eunicidiol, an anti-inflammatory diterpene from Eunicea fusca. Journal of Natural Products, 75(7), 1289–1293. https://doi.org/10.1021/np300149y
Mazur, M., Olczak, J., Olejniczak, S., et al. (2018). Targeting acidic mammalian chitinase in asthma models. Journal of Medicinal Chemistry, 61(3), 695–710. https://doi.org/10.1021/acs.jmedchem.7b01051
Morris, G. M., Huey, R., Lindstrom, W., et al. (2009). AutoDock4 and AutoDockTools4. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
Narayanaswamy, R., Wai, L. K., & Esa, N. M. (2017). Molecular docking analysis of bioactive compounds. Pharmacognosy Magazine, 13(Suppl 3), S512–S518. https://doi.org/10.4103/pm.pm_195_16
Refbacks
- There are currently no refbacks.
_(1).jpg)




.png)



.png)

