Pengaruh Suhu Kalsinasi terhadap Karakteristik Komposit Forsterit-Karbon Tersintesis dalam Medium Gas Argon

Solihudin Solihudin, Haryono Haryono, Atiek Rostika Noviyanti, Muhammad Rizky Ridwansyah


Komposit forsterit-karbon merupakan salah satu material modifikasi dari forsterit yang berpotensi memiliki sifat isolator panas baik. Karbon dalam komposit dapat mengisi cacat titik pada kristal forsterit. Arang sekam padi (residu gasifikasi) mengandung SiO2 amorf dan karbon yang tinggi. Penelitian ini bertujuan menentukan pengaruh suhu kalsinasi dalam medium gas inert (dengan pengaliran gas argon) terhadap karakteristik komposit forsterit-karbon dari arang sekam padi dan magnesium karbonat. Metode penelitian meliputi preparasi arang sekam padi hasil gasifikasi, dan sintesis forsterit-karbon. Proses sintesis komposit forsterit karbon dilakukan dengan cara mencampurkan arang sekam padi dengan kalium karbonat pada rasio mol magmesium terhadap silikon sebesar 2 : 1 kemudian dikalsinasi dengan suhu divariasikan (700, 800, 900, dan 1000 oC). Selanjutnya sampel hasil sintesis dikarakterisasi dengan Fourier-transform infrared (FTIR), X-ray diffraction (XRD), dan scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). Hasil karakterisasi dengan FTIR dan XRD diperoleh kesimpulan bahwa forsterit mulai terbentuk pada suhu kalisiasi 800 oC dan sempurna pada suhu 1000 oC, karenanya komposit yang terbentuk pada 1000 oC dimungkinkan sebagai forsterit-karbon, di mana unsur-unsur yang terkandung ditunjukkan oleh SEM-EDS.


The Effect of Calcination Temperature on the Characteristics of Forsterite-Carbon Composites Synthesized in Argon Gas Medium. Forsterite-carbon composite is one of the material modifications of forsterite, which potentially has a good heat insulation property. Carbon in composites can fill point defects in forsterite crystals. Rice husk charcoal, as gasification residues, contains high amorphous SiO2 and carbon. This study aims to determine the effect of temperature on the calcination of a mixture of rice husk charcoal and magnesium carbonate under an inert gas (argon gas) on the characteristics of the forsterite-carbon composite produced. The experimental research performed includes the preparation of gasified rice husk charcoal and the synthesis of the carbon-forsterite composite. The synthesis process of the carbon-forsterite composites was carried out by mixing rice husk charcoal with potassium carbonate at a mole ratio of magnesium to silicon of 2 : 1. The mixture was then calcined with varying temperatures (700, 800, 900, and 1000 °C). Furthermore, the synthesized sample was characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The FTIR and XRD analysis show that the forsterites began to form at a calcination temperature of 800 °C and perfectly formed at a temperature of 1000 °C; therefore, the composite formed at 1000 °C is possible as forsterite-carbon, in which the contained elements were indicated by SEM-EDS.


rice husk char; forsterite-carbon; inert conditions; magnesium carbonate

Full Text:



Chen, L., Ye, G., Wang, Q., Blanpain, B., Malfliet, A., and Guo, M., 2015. Low Temperature Synthesis of Forsterite from Hydromagnesite and Fumed Silica Mixture. Ceramics International 41(2), 2234–2239. doi:10.1016/j.ceramint.2014.10.025.

Dunnigan, L., Ashman, P. J., Zhang, X., and Kwong, C. W., 2018. Production of Biochar from Rice Husk: Particulate Emissions from the Combustion of Raw Pyrolysis Volatiles. Journal of Cleaner Production 172, 1639–1645. doi:10.1016/j.jclepro.2016.11.107.

Freund, F., Kathrein, H., Wengeler, H., Knobel, R., and Reinen, H. J., 1980. Carbon in Solid Solution in Forsterite—a Key to the Untractable Nature of Reduced Carbon in Terrestrial and Cosmogenic Rocks. Geochimica et Cosmochimica Acta 44(9), 1319–1333. doi:10.1016/0016-7037(80)90092-7. Hossain, S. K. S., Mathur, L., Singh, P., and Majhi, M. R., 2017. Preparation of Forsterite Refractory Using Highly Abundant Amorphous Rice Husk Silica for Thermal Insulation. Journal of Asian Ceramic Societies 5(2), 82–87. doi:10.1016/j.jascer.2017.01.001.

Houston, D.F., 1972. Rice Chemistry and Technology. American Association of Cereal Chemist, Inc., Minnesota.

Ismunadji, M., 1988. Padi. Buku I. Edisi I. Badan Penelitian dan Pengembangan Pertanian, Bogor. Katsuki, H., Furuta, S., Watari, T., and Komarneni, S., 2005. ZSM-5 Zeolite/Porous Carbon Composite: Conventional- and Microwave-Hydrothermal Synthesis from Carbonized Rice Husk. Microporous and Mesoporous Materials 86(1-3), 145–151. doi:10.1016/j.micromeso.2005.07.010. Martínez-González, J., Navarro-Ruiz, J., and Rimola, A., 2018. Multiscale Computational Simulation of Amorphous Silicates’ Structural, Dielectric, and Vibrational Spectroscopic Properties. Minerals 8(8), 353. doi:10.3390/min8080353.

Ohtsuki, Y., Komatsu, N., Watanabe, A., and Saeki, G., 1985. Forsterite-Carbon Refractory. United States Patent No. 4.497.901. Pack, A., Palme, H., and Shelley, J. M. G., 2005. Origin of Chondritic Forsterite Grains. Geochimica et Cosmochimica Acta, 69(12), 3159–3182. doi:10.1016/j.gca.2005.01.013. Saberi, A., Alinejad, B., Negahdari, Z., Kazemi, F., and Almasi, A., 2007. A Novel Method to Low Temperature Synthesis of Nanocrystalline Forsterite. Materials Research Bulletin 42(4), 666–673. doi:10.1016/j.materresbull.2006.07.020.

Saidi, R., Fathi, M., and Salimjazi, H., 2017. Synthesis and Characterization of Bioactive Glass Coated Forsterite Scaffold for Tissue Engineering Applications. Journal of Alloys and Compounds (727), 956 – 962. doi: 10.1016/j.ceramint.2009.02.001. Tavangarian, F., Emadi, R., and Shafyei, A., 2010. Influence of Mechanical Activation and Thermal Treatment Time on Nanoparticle Forsterite Formation Mechanism. Powder Technology 198(3), 412–416. doi:10.1016/j.powtec.2009.12.007. Tran, T. N., Anh Pham, T. V., Phung Le, M. L., Thoa Nguyen, T. P., and Tran, V. M., 2013. Synthesis of Amorphous Silica and Sulfonic Acid Functionalized Silica Used as Reinforced Phase for Polymer Electrolyte Membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology 4(4), 045007. doi:10.1088/2043-6262/4/4/045007. Whitby, R. L. D., Brigatti, K. S., Kinloch, I. A., Randall, D. P., and Maekawa, T., 2004. Novel Mg2SiO4 Structures. Chemical Communications (21), 2396. doi:10.1039/b409456e.

Xu, P.K. and Wei, G.Z., 2005. New Process Technology for Refractory, Metallurgy Industry Press, Beijing. Yan, W., Liu, D., Tan, D., Yuan, P., and Chen, M., 2012. FTIR Spectroscopy Study of the Structure Changes of Palygorskite Under Heating. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97, 1052–1057. doi:10.1016/j.saa.2012.07.085.

Zhang, Y., Zhai, M., Wang, X., Sun, J., Dong, P., Liu, P., and Zhu, Q., 2015. Preparation and Characteristic of Biomass Char. BioResource (10), 3017 – 3026. doi: 10.15376/biores.10.2.3017-3026.


  • There are currently no refbacks.