Senyawa Hidrazone dari Vanilin-DNPH Sebagai Sensor Kolorimetri Anion Sianida
Abstract
Senyawa hidrazon (E)-4-((2-(2,4-dinitrophenyl)hydrazineylidene)methyl)-2-methoxyphenol telah disintesis dari vanilin dan 2,4-dinitrofenilhidrazin (DNPH). Uji sensor anion dilakukan dengan menambahkan anion F-, Cl-, Br-, I-, CN-, SO42-, CO32-, CH3COO- dan H2PO4- dalam pelarut asetonitril. Uji limit deteksi reseptor (E)-4-((2-(2,4-dinitrophenyl)hydrazineylidene)methyl)-2-methoxyphenol terhadap anion sianida dilakukan dalam pelarut asetonitril. Hasil uji sensor anion menunjukan bahwa reseptor selektif terhadap anion sianida dengan menghasilkan perubahan warna dari kuning ke merah. Hasil analisa dengan spektrofotometer UV-Vis reseptor memberikan perubahan panjang gelombang dari 395 nm menjadi 472 nm pada penambahan anion sianida. Reseptor (E)-4-((2-(2,4-dinitrophenyl)hydrazineylidene)methyl)-2-methoxyphenol dapat mendeteksi anion CN- dengan limit deteksi sebesar 7 mM.
A Hydrazone Compound from Vanillin-DNPH as Colorimetric Sensor of Cyanide Anion. A hydrazone compound (E)-4-((2-(2,4-dinitrophenyl)hydrazineylidene)methyl)-2-methoxyphenol has been synthesized from vanillin and 2,4-dinitrophenylhydrazine (DNPH). The anion sensor study were done by adding Br-, CN-, F-, SO42-, Cl-, I- , CO32-, CH3COO- and H2PO4- anion in acetonitrile solvent. The detection limit study of receptor E)-4-((2-(2,4-dinitrophenyl)hydrazineylidene)methyl)-2-methoxyphenol for cyanide anion was carried out in acetonitrile. The result of anion sensor study shows that the receptor was selective to cyanide anion by providing change of color from yellow to red. The analysis result using spectrophotometer ultraviolet-visible of the receptor provided change of maximum wavelength from 395 nm to 472 nm when the cyanide anion was added. Receptor (E)-4-((2-(2,4-dinitrophenyl) hydrazineylidene)methyl)-2-methoxyphenol can detect CN- with limit of detection 7 mM.
Keywords
Full Text:
PDFReferences
Cao, J., and Wang, X., 2013. An Investigation of the Deprotonation of Hydrazone-based Receptors on Interaction with Anion : Develop A Colorimetric System Distinguishing Cyanide from Anions. Tetrahedron 69(48), 10267–10271. doi: 10.1016/j.tet.2013.10.030.
Dalapati, S., Jana, S., and Guchhait, N., 2014. Anion Recognition by Simple Chromogenic and Chromo-Fluorogenic Salicylidene Schiff Base or Reduced-Schiff Base Receptors. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy 129, 499–508. doi: 10.1016/j.saa.2014.03.090.
Ferreira, N. L., de Cordova, L. M., Schramm, A. D. S., Nicoleti, C. R., and Machado, V. G., 2019. Chromogenic and Fluorogenic Chemodosimeter Derived from Meldrum’s Acid Detects Cyanide and Sulfide in Aqueous Medium. Journal of Molecular Liquids 282, 142–153. doi: 10.1016/j.molliq.2019.02.129.
He, X., Mei, Y., Wang, Y., Sun, W., and Shen, M., 2019. Determination of Inorganic Anions in the Whole Blood by Ion Chromatography. Journal of pharmaceutical and biomedical analysis 163, 58–63. doi: 10.1016/j.jpba.2018.09.030.
Huang, X., Gu, X., Zhang, G., and Zhang, D., 2012. A Highly Selective Fluorescence Turn-on Detection of Cyanide Based on the Aggregation of Tetraphenylethylene Molecules Induced by Chemical Reaction. Chemical Communications 48(100), 12195–12197. doi: 10.1039/c2cc37094h.
Isaad, J., and Perwuelz, A., 2010. New Color Chemosensors for Cyanide Based on Water Soluble Azo Dyes. Tetrahedron Lett., 51(44), 5810–5814. doi: 10.1016/j.tetlet.2010.08.098.
Jayasudha, P., Manivannan, R., and Elango, K. P. 2017. Benzoquinone Based Chemodosimeters for Selective and Sensitive Colorimetric and Turn-on Fluorescent Sensing of Cyanide in Water. Sens. Actuators, B: Chemical, 251(2), 380–388. doi: 10.1016/j.snb.2017.05.105.
Kang, J., Song, E. J., Kim, H., Kim, Y. H., Kim, Y., Kim, S. J., and Kim, C., 2013. Specific Naked Eye Sensing of Cyanide by Chromogenic Host: Studies on The Effect of Solvents. Tetrahedron Letters 54(8), 1015–1019. doi: 10.1016/j.tetlet.2012.12.053.
Kim, Y. H., Choi, M. G., Im, H. G., Ahn, S., Shim, I. W., and Chang, S. K., 2012. Chromogenic Signalling of Water Content in Organic Solvents by Hydrazone-Acetate Complexes. Dyes Pigments 92(3), 1199–1203. doi: 10.1016/j.dyepig.2011.07.019.
Lakshmi, P. R., Jayasudha, P., and Elango, K. P., 2019. Selective Chromogenic Detection of Cyanide in Aqueous Solution – Spectral, Electrochemical and Theoretical Studies. Spectrochimia Acta, Part A: Molecular and Biomolecular Spectroscopy 213, 318–323. doi: 10.1016/j.saa.2019.01.074.
Li, Y., Li, J., Lin, H., Shao, J., Cai, Z.-S., and Lin, H., 2010. A Novel Colorimetric Receptor Responding AcO− Anions Based on an Azo Derivative in DMSO and DMSO/Water Solution. Journal of Luminescence 130(3), 466–472. doi: 10.1016/j.jlumin.2009.10.015.
Mahajan, R. K., Kaur, R., Miyake, H., and Tsukube, H., 2007. Zn(II) Complex-based Potentiometric Sensors for Selective Determination of Nitrate Anion. Analytical Chimia Acta 584(1), 89–94. doi: 10.1016/j.aca.2006.11.011.
Martinez-Manez, R., and Sancenon, F., 2003. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews 103, 4419–4476.
Mondal, J., Manna, A. K., and Patra, G. K., 2018. Highly Selective Hydrazone Based Reversible Colorimetric Chemosensors for Expeditious Detection of CN− in Aqueous Media. Inorganica Chimica Acta, 474, 22–29. doi: 10.1016/j.ica.2018.01.013.
Park, S., Hong, K. H., Hong, J. I., and Kim, H. J., 2012. Azo Dye-based Latent Colorimetric Chemodosimeter for the Selective Detection of Cyanides in Aqueous Buffer. Sensors and Actuators, B: Chemical 174, 140–144. doi: 10.1016/j.snb.2012.08.038.
Pati, P. B., 2016. Organic Chemodosimeter for Cyanide: A Nucleophilic Approach. Sensors and Actuators, B: Chemical 222, 374–390. doi: 10.1016/j.snb.2015.08.044.
Qiao, Y.-H., Lin, H., Shao, J., and Lin, H.-K., 2009. A Highly Selective Naked-Eye Colorimetric Sensor for Acetate Ion Based on 1,10-phenanthroline-2,9-dicarboxyaldehyde-di-(p-substitutedphenyl-hydrazone). Spectrochimia Acta, Part A: Molecular and Biomolecular Spectroscopy 72(2), 378–381. doi: 10.1016/j.saa.2008.10.007.
Reena, V., Suganya, S., and Velmathi, S., 2013. Synthesis and Anion Binding Studies of Azo-Schiff Bases: Selective Colorimetric Fluoride and Acetate Ion Sensors. Journal f Fluorine Chemistry 153, 89–95. doi: 10.1016/j.jfluchem.2013.05.010.
Safavi, A., Maleki, N., and Shahbaazi, H. R., 2004. Indirect Determination of Cyanide Ion and Hydrogen Cyanide by Adsorptive Stripping Voltammetry at A Mercury Electrode. Analytical Chimia Acta 503(2), 213–221. doi: 10.1016/j.aca.2003.10.032.
Shang, X., and Xu, X., 2009. The Anion Recognition Properties of Hydrazone Derivatives Containing Anthracene. BioSystems 96(2), 165–171. doi: 10.1016/j.biosystems.2009.01.003.
Shao, J., 2010. A Novel Colorimetric and Fluorescence Anion Sensor with A Urea Group as Binding Site and A Coumarin Group as Signal Unit. Dyes and Pigments 87(3), 272–276. doi: 10.1016/j.dyepig.2010.04.007.
Singhal, D., Gupta, N., and Singh, A. K., 2016. The Anion Recognition Properties of A Novel Hydrazone Based on Colorimetric and Potentiometric Studies. Mater. Sci. Eng. C 58, 548–557. doi: 10.1016/j.msec.2015.08.068.
Udhayakumari, D., 2018. Chemical Chromogenic and Fluorogenic Chemosensors for Lethal Cyanide Ion. A Comprehensive Review of the Year 2016. Sensors and Actuators B: Chemical 259, 1022–1057. doi: 10.1016/j.snb.2017.12.006.
WHO., 2011. Guidelines for Drinking-water Quality (fourth). WHO Press, Geneva.
Xu, J. F., Chen, H. H., Chen, Y. Z., Li, Z. J., Wu, L. Z., Tung, C. H., and Yang, Q. Z., 2012. A colorimetric and fluorometric dual-modal chemosensor for cyanide in water. Sensors and Actuators, B: Chemical 168, 14–19. doi: 10.1016/j.snb.2011.12.101.
Refbacks
- There are currently no refbacks.