Sintesis Grafena Oksida Tereduksi Terdoping Nitrogen Dan Sulfur Dari Amonium Tiosianat Sebagai Elektroda Lawan Pada Sistem Dye Sensitized Solar Cell (DSSC)

Sayekti Wahyuningsih, Ari Handono Ramelan, Mochammad Fuad, Qonita Awliya Hanif

Abstract

Pada penelitian ini telah berhasil disintesis komposit rGO-NS melalui pendopingan pada material berbasis grafena oksida tereduksi (rGO) dengan penambahan amonium thiosianat sebagai sumber dopan N dan S. Dopan N dan S pada rGO mempengaruhi struktur rGO yang ditunjukkan dengan pergeseran puncak difraktogram pada 2θ=24,97 (hkl 002). Spektra Fourier transform infrared (FTIR) material rGO-NS memberikan serapan puncak baru dari vibrasi C=N pada daerah 1501-1516 cm-1 dan dari vibrasi C-N serta C-S pada daerah 1130 – 1146 cm-1. Morfologi rGO-NS berupa lembaran tipis dua Dimensional (2D) bertumpuk dengan jarak antar lapis tertentu. Pengujian I-V measurement menggunakan Keithley 2602A, sistem DSSC dengan material rGO-NS digunakan sebagai bahan elektroda lawan menunjukkan efisiensi terbesar mencapai 0,1268%, dengan peningkatan efisiensi sebanyak 11,32 kali apabila dibandingkan dengan Pt.

Synthesis of Reduced Graphene Oxide doped with Nitrogen and Sulfur from Ammonium Thiocyanate as a Counter Electrode in Dye-Sensitized Solar Cell (DSSC) System. In this research, the rGO-NS composite was successfully synthesized through doping on reduced graphene oxide based-materials (rGO) with the addition of ammonium thiocyanate as nitrogen (N) and sulfur (S) source. N and S dopant influence the rGO structure indicated by the peak shifting into 2θ=24.97 (hkl 002). The Fourier transform infrared (FTIR) spectrum of material rGO-NS reveals new bands which correspond to C=N vibration within 1501 – 1516 cm-1 and C–N vibration together with C–S at area between 1130-1146 cm-1. The morphology of rGO-NS shows that the material consists of many 2 Dimensional (2D) thin layers. The current and voltage (I-V) measurement using Keithley 2602A with material rGO-NS as a counter electrode on DSSC system, demonstrates that the highest efficiency is 0.1268%. This performance is 11.32 times higher compare to the DSSC system with Pt.

Keywords

amonium thiosianat; DSSC; elektroda lawan; rGO-NS

Full Text:

PDF

References

Andrameda, Y.A., Susanti, D., and Nurdiansah, H. 2018. Analisa Pengaruh Doping Boron Terhadap Sifat Kapasitif Material Graphene untuk Aplikasi Superkapasitor. Jurnal Teknik ITS 7(1), 55-60. doi: 10.12962/j23373539.v7i1.28265.

Cruz, R., Tanaka, D.A.P., and Mendes, A. 2012. Reduced Graphene Oxide Films As Transparent Counter-Electrodes for Dye-Sensitized Solar Cells. Solar Energy 86(2), 716-724. doi: 10.1016/j.solener.2011.11.010.

Duan, X., O’Donnell, K., Sun, H., Wang, Y., and Wang, S. 2015. Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. Small Journal. 11(25), 3036-3044. doi: 10.1002/smll.201403715.

Eluyemi, M.S., Elureja, M.A., Adedeji, A.V., Olofinjana, B., Fasakin, O., Akinwunmi, O.O., Ilori, O.O., Famojuro, A.T., Ayinde, S.A., and Ajayi, E.O.B. 2016. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films Deposited by Spray Pyrolysis Method. Graphene 5(03), 143-154. doi: 10.4236/graphene.2016.53012.

Fu, C., Song, C, Liu, L., Xie, X., and Zhao, W. 2016. Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science 11, 3876-3886. doi: 10.20964/110391.

Gao, Z., L. Wang, J. Chang, X. Liu, D. Wu, F. Xu, Y. Guo, and K. Jiang. 2016. Nitrogen Doped Porous Graphene as Counter Electrode for Efficient Dye-Sensitized Solar Cell. Electrochimica Acta 188, 441-449. doi: 10.1016/j.electacta.2015.12.008.

Gong, J., Sumathy, K., Qiao, Q., dan Zhou, Z. 2017. Review on Dye-Sensitized Solar Cells (DSSCs): Advanced Techniques and Research Trends. Renewable and Sustainable Energy Reviews 68, 234-246. doi: 10.1016/j.rser.2016.09.097.

Hardani, Hendra, Darmawan, M.I., Cari, and Supriyanto, A. 2016. Pengaruh Konsentrasi Ruthenium (N719) Sebagai Fotosensitizer dalam Dye-Sensitized Solar Cells (DSSC) Transparan. Jurnal Fisika dan Aplikasinya 12(3), 104-108. doi: http://dx.doi.org/10.12962.

Jayaraman, V.K., álvarez, AM, Bizarro, M., Koudriavtsev, Y., and de la Luz Olvera Amador, M., 2017. Effect of Precursor Type and Doping Concentration on the Physical Properties of Ultrasonically Sprayed Aluminium and Indium Co-Doped Zinc Oxide Thin Films. Thin Solid Films 642, 14-19. doi: 10.1016/j.tsf.2017.09.012.

Kannan, A.G., Zhao, J., Jo, S.G., Kang, Y.S., and Kim, D. 2014. Nitrogen and Sulfur Co-doped Graphene Counter Electrodes with Synergistically Enhanced Performance for Dye-Sensitized Solar Cells. Journal of Materials Chemistry 31(2), 12232-12239. doi: 10.1039/C4TA01927J.

Li, M., Guo. Q., Xie, J., Li, Y., and Feng, Y. 2017. CuO Nanoparticles Supported on Nitrogen and Sulfur Co-Doped Graphene Nanocomposites for Non Enzymatic Glucose Sensing. Journal Nanopart Res 19(11), 1-12. doi: 10.1007/s11051-016-3712-7.

Liu, Q., Zhou, Y., Duan, Y., Wang, M., and Lin, Y. 2013. Improved Photovoltaic Performance of Dye-Sensitized Solar Cells (DSSCs) by Zn+ Mg Co-doped TiO2 Electrode. Electrochimica Acta 95, 48-53. doi: 10.1016/j.electacta.2013.02.008.

Razmjooei, F., Singh, K.P., Young, S.M., and Yu, J.S. 2014. Enhanced Electrocatalytic Activity by Addition Doping of Phosphorus in Nitrogen and Sulfur Graphene: A Comprehensive Study. Carbon. 78, 257-267. doi: 10.1016/j.carbon.2014.07.002.

Sarkar, S.K., Raul, K.K., Pradhan, S.S., Basu, S., and Nayak, A. 2014. Magnetic Properties of Graphite Oxide and Reduced Graphene Oxide. Physica E. 64, 78-82. doi: 10.1016/j.physe.2014.07.014.

Su, Y., Zhang, Y., Zhuang, X., Li, S., Wu, D., Zhang, F., and Feng, X. 2013. Low-temperature synthesis of nitrogen/sulfur co-doped threedimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62, 296–301. doi: 10.1016/j.carbon.2013.05.067.

Syakir, N., Nurlina, R., Anam, S., Aprilia, A., Hidayat, S., and Fitrilawati. 2015. Kajian Pembuatan Oksida Grafit untuk Produksi Oksida Grafena dalam Jumlah Besar. Jurnal Fisika Indonesia 19(55), 26-29. doi: 10.22146/jfi.24354.

Xiang, Z., Zhou, X., Wan, G., Zhang, G., and Cao, D. 2014. Improving Energy Conversion Efficiency of Dye-Sensitized Solar Cells by Modifying TiO2 Photoanodes with Nitrogen-Reduced Graphene Oxide. ACS Sustainable Chemistry & Engineering. 2(5), 1234-1240. doi: 10.1021/sc5000732.

Xu, X., Huang, D., Coo, K., Wang, M., Zakaeruddin, S.M., and Gratzel, M. 2013. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter for Dye-Sensitized Solar Cells. Scientific Reports 3(1489), 1-7. doi: 10.1038/srep01489.

Yu, Z., Bai, Y., Wang, Y., Liu, Y., Zhao, Y., Liu, Y., and Sun, K. 2016. One-step Synthesis of Three-Dimensional Nitrogen and Sulfur Co-doped Graphene Networks As Low Cost Metal-Free Counter Electrodes for Dye-Sensitized Solar Cells. Chemical Engineering Journal 311, 302-309. doi: 10.1016/j.cej.2016.11.093.

Refbacks

  • There are currently no refbacks.