Sintesis Grafena Oksida Tereduksi Terdoping Nitrogen Dan Sulfur Dari Amonium Tiosianat Sebagai Elektroda Lawan Pada Sistem Dye Sensitized Solar Cell (DSSC)
Abstract
Pada penelitian ini telah berhasil disintesis komposit rGO-NS melalui pendopingan pada material berbasis grafena oksida tereduksi (rGO) dengan penambahan amonium thiosianat sebagai sumber dopan N dan S. Dopan N dan S pada rGO mempengaruhi struktur rGO yang ditunjukkan dengan pergeseran puncak difraktogram pada 2θ=24,97 (hkl 002). Spektra Fourier transform infrared (FTIR) material rGO-NS memberikan serapan puncak baru dari vibrasi C=N pada daerah 1501-1516 cm-1 dan dari vibrasi C-N serta C-S pada daerah 1130 – 1146 cm-1. Morfologi rGO-NS berupa lembaran tipis dua Dimensional (2D) bertumpuk dengan jarak antar lapis tertentu. Pengujian I-V measurement menggunakan Keithley 2602A, sistem DSSC dengan material rGO-NS digunakan sebagai bahan elektroda lawan menunjukkan efisiensi terbesar mencapai 0,1268%, dengan peningkatan efisiensi sebanyak 11,32 kali apabila dibandingkan dengan Pt.
Synthesis of Reduced Graphene Oxide doped with Nitrogen and Sulfur from Ammonium Thiocyanate as a Counter Electrode in Dye-Sensitized Solar Cell (DSSC) System. In this research, the rGO-NS composite was successfully synthesized through doping on reduced graphene oxide based-materials (rGO) with the addition of ammonium thiocyanate as nitrogen (N) and sulfur (S) source. N and S dopant influence the rGO structure indicated by the peak shifting into 2θ=24.97 (hkl 002). The Fourier transform infrared (FTIR) spectrum of material rGO-NS reveals new bands which correspond to C=N vibration within 1501 – 1516 cm-1 and C–N vibration together with C–S at area between 1130-1146 cm-1. The morphology of rGO-NS shows that the material consists of many 2 Dimensional (2D) thin layers. The current and voltage (I-V) measurement using Keithley 2602A with material rGO-NS as a counter electrode on DSSC system, demonstrates that the highest efficiency is 0.1268%. This performance is 11.32 times higher compare to the DSSC system with Pt.
Keywords
Full Text:
PDFReferences
Andrameda, Y.A., Susanti, D., and Nurdiansah, H. 2018. Analisa Pengaruh Doping Boron Terhadap Sifat Kapasitif Material Graphene untuk Aplikasi Superkapasitor. Jurnal Teknik ITS 7(1), 55-60. doi: 10.12962/j23373539.v7i1.28265.
Cruz, R., Tanaka, D.A.P., and Mendes, A. 2012. Reduced Graphene Oxide Films As Transparent Counter-Electrodes for Dye-Sensitized Solar Cells. Solar Energy 86(2), 716-724. doi: 10.1016/j.solener.2011.11.010.
Duan, X., O’Donnell, K., Sun, H., Wang, Y., and Wang, S. 2015. Sulfur and Nitrogen Co-Doped Graphene for Metal-Free Catalytic Oxidation Reactions. Small Journal. 11(25), 3036-3044. doi: 10.1002/smll.201403715.
Eluyemi, M.S., Elureja, M.A., Adedeji, A.V., Olofinjana, B., Fasakin, O., Akinwunmi, O.O., Ilori, O.O., Famojuro, A.T., Ayinde, S.A., and Ajayi, E.O.B. 2016. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films Deposited by Spray Pyrolysis Method. Graphene 5(03), 143-154. doi: 10.4236/graphene.2016.53012.
Fu, C., Song, C, Liu, L., Xie, X., and Zhao, W. 2016. Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science 11, 3876-3886. doi: 10.20964/110391.
Gao, Z., L. Wang, J. Chang, X. Liu, D. Wu, F. Xu, Y. Guo, and K. Jiang. 2016. Nitrogen Doped Porous Graphene as Counter Electrode for Efficient Dye-Sensitized Solar Cell. Electrochimica Acta 188, 441-449. doi: 10.1016/j.electacta.2015.12.008.
Gong, J., Sumathy, K., Qiao, Q., dan Zhou, Z. 2017. Review on Dye-Sensitized Solar Cells (DSSCs): Advanced Techniques and Research Trends. Renewable and Sustainable Energy Reviews 68, 234-246. doi: 10.1016/j.rser.2016.09.097.
Hardani, Hendra, Darmawan, M.I., Cari, and Supriyanto, A. 2016. Pengaruh Konsentrasi Ruthenium (N719) Sebagai Fotosensitizer dalam Dye-Sensitized Solar Cells (DSSC) Transparan. Jurnal Fisika dan Aplikasinya 12(3), 104-108. doi: http://dx.doi.org/10.12962.
Jayaraman, V.K., álvarez, AM, Bizarro, M., Koudriavtsev, Y., and de la Luz Olvera Amador, M., 2017. Effect of Precursor Type and Doping Concentration on the Physical Properties of Ultrasonically Sprayed Aluminium and Indium Co-Doped Zinc Oxide Thin Films. Thin Solid Films 642, 14-19. doi: 10.1016/j.tsf.2017.09.012.
Kannan, A.G., Zhao, J., Jo, S.G., Kang, Y.S., and Kim, D. 2014. Nitrogen and Sulfur Co-doped Graphene Counter Electrodes with Synergistically Enhanced Performance for Dye-Sensitized Solar Cells. Journal of Materials Chemistry 31(2), 12232-12239. doi: 10.1039/C4TA01927J.
Li, M., Guo. Q., Xie, J., Li, Y., and Feng, Y. 2017. CuO Nanoparticles Supported on Nitrogen and Sulfur Co-Doped Graphene Nanocomposites for Non Enzymatic Glucose Sensing. Journal Nanopart Res 19(11), 1-12. doi: 10.1007/s11051-016-3712-7.
Liu, Q., Zhou, Y., Duan, Y., Wang, M., and Lin, Y. 2013. Improved Photovoltaic Performance of Dye-Sensitized Solar Cells (DSSCs) by Zn+ Mg Co-doped TiO2 Electrode. Electrochimica Acta 95, 48-53. doi: 10.1016/j.electacta.2013.02.008.
Razmjooei, F., Singh, K.P., Young, S.M., and Yu, J.S. 2014. Enhanced Electrocatalytic Activity by Addition Doping of Phosphorus in Nitrogen and Sulfur Graphene: A Comprehensive Study. Carbon. 78, 257-267. doi: 10.1016/j.carbon.2014.07.002.
Sarkar, S.K., Raul, K.K., Pradhan, S.S., Basu, S., and Nayak, A. 2014. Magnetic Properties of Graphite Oxide and Reduced Graphene Oxide. Physica E. 64, 78-82. doi: 10.1016/j.physe.2014.07.014.
Su, Y., Zhang, Y., Zhuang, X., Li, S., Wu, D., Zhang, F., and Feng, X. 2013. Low-temperature synthesis of nitrogen/sulfur co-doped threedimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62, 296–301. doi: 10.1016/j.carbon.2013.05.067.
Syakir, N., Nurlina, R., Anam, S., Aprilia, A., Hidayat, S., and Fitrilawati. 2015. Kajian Pembuatan Oksida Grafit untuk Produksi Oksida Grafena dalam Jumlah Besar. Jurnal Fisika Indonesia 19(55), 26-29. doi: 10.22146/jfi.24354.
Xiang, Z., Zhou, X., Wan, G., Zhang, G., and Cao, D. 2014. Improving Energy Conversion Efficiency of Dye-Sensitized Solar Cells by Modifying TiO2 Photoanodes with Nitrogen-Reduced Graphene Oxide. ACS Sustainable Chemistry & Engineering. 2(5), 1234-1240. doi: 10.1021/sc5000732.
Xu, X., Huang, D., Coo, K., Wang, M., Zakaeruddin, S.M., and Gratzel, M. 2013. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter for Dye-Sensitized Solar Cells. Scientific Reports 3(1489), 1-7. doi: 10.1038/srep01489.
Yu, Z., Bai, Y., Wang, Y., Liu, Y., Zhao, Y., Liu, Y., and Sun, K. 2016. One-step Synthesis of Three-Dimensional Nitrogen and Sulfur Co-doped Graphene Networks As Low Cost Metal-Free Counter Electrodes for Dye-Sensitized Solar Cells. Chemical Engineering Journal 311, 302-309. doi: 10.1016/j.cej.2016.11.093.
Refbacks
- There are currently no refbacks.