Optimasi Metode Microwave-Assisted Extraction (MAE) untuk Menentukan Kadar Flavonoid Total Alga Coklat Padina australis

Bina Lohita Sari, Triastinurmiatiningsih Triastinurmiatiningsih, Tri Saptari Haryani

Abstract

Metode Microwave-Assisted Extraction (MAE) digunakan untuk mengekstraksi senyawa flavonoid dari simplisia alga coklat Padina australis. Sampel diperoleh dari Pantai Bayah, Banten Indonesia. Kondisi optimal ekstraksi ditentukan dengan Response Surface Methodology (RSM). Desain Box-Behnken (BBD) digunakan untuk mengevaluasi pengaruh 3 faktor dengan 3 level yaitu daya microwave (300, 450, 600 watt), konsentrasi etanol  (30, 50, 70%), dan waktu ekstraksi (7, 8 dan 9 menit) dengan 15 perlakuan yang berbeda. Hasil disain eksperimen dengan BBD menunjukkan kondisi ekstraksi optimum yaitu pada daya microwave 414 watt, konsentrasi etanol 50,33% dan waktu ekstraksi 7,89 menit menghasilkan kadar prediksi flavonoid sebesar nilai 0,2963%. Nilai ini mendekati nilai kadar flavonoid yang diperoleh secara eksperimental sebesar 0,2961%, pada kondisi menggunakan daya microwave sebesar 450 watt, konsentrasi etanol 50% dengan lama ekstraksi 8 menit. Berdasarkan hasil penelitian, kadar flavonoid total dapat meningkat secara signifikan dengan melakukan optimasi proses MAE menggunakan RSM.

Optimization of Microwave-Assisted Extraction for Total Flavonoid Content of Padina australis Brown Algae.  Microwave-Assisted Extraction (MAE) was done to extraction flavonoid from Padina australis brown algae simplicial. The sample collected from Bayah coastal waters, Banten Indonesia. Optimum extraction condition was determined by the response surface methodology (RSM). The Box-Behnken design (BBD) was used to evaluate the influence of 3 factors with 3 levels extraction that is microwave power (300, 450, 600 watts), ethanol concentration (30, 50, 70%), and extraction time (7, 8 and 9 minutes) with 15 different runs. The research showed that optimum extraction condition was at 414 watts of microwave power, 50.33% ethanol concentration, and time extraction of 7.89 minutes yielded a predicted value of total flavonoid content of 0.2963%. This value approaches to the flavonoid content obtained experimentally at 0.2961% under condition of 450 watts microwave power, 50% ethanol concentration, and time extraction of 8 minutes. Based on the result, total flavonoid content can be significantly increased by optimizing the MAE process use RSM.

Keywords

Microwave-Assisted Extraction; kadar flavonoid total; alga coklat; Padina australis

Full Text:

PDF

References

Alara, O.R., Abdurahman, N.H., and Olalere, O.A., 2018. Ethanolic Extraction of Bioactive Compounds from Vernonia amygdalina Leaf Using Response Surface Methodology as an Optimization Tool. Journal of Food Measurement and Characterization 12, 1107-1122. doi: 10.1007/s11694-018-9726-3.

Bas, D., and Boyaci, I.H., 2007. Modeling and Optimization I: Usability of Response Surface Methodology. Journal of Food Engineering 78(3), 836-45. doi: 10.1016/j.jfoodeng.2005.11.024.

Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., Devkota, H. P., Orhan, I. E., Patra, J. K., Das, G., Anandharamakrishnan, C., Gomez-Gomez, L., Nabavi, S. F., Nabavi, S. M., and Atanasov, A. G. A., 2018. Critical Analysis of Extraction Techniques Used for Botanicals: Trends, Priorities, Industrial Uses and Optimization Strategies. Trac- Trends Analytical Chemistry 100, 82–102. doi: 10.1016/j.trac.2017.12.018.

Benjama, O. and P. Masniyom., 2012. Biochemical Composition and Physicochemical Properties of Two Red Seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in Southern Thailand. Songklanarin Journal of Science and Technology 34(2), 223-230.

Camel, V., 2000. Microwave-assisted Solvent Extraction of Environmental Samples. Trac- Trends Analytical Chemistry 19, 229–248. doi: 10.1016/S0165-9936(99)00185-5.

Chakaborty, K., Joseph, D., and Praveen, N.K., 2015. Antioxidant Activities and Phenolic Contents of Three Red Seaweeds (Division: Rhodophyta) Harvested from the Gulf of Mannar of Peninsular India. Journal of Food Science Technology 54, 1924-1935. doi: 10.1007/s13197-013-1189-2

Coneac, G., Gafiţanu, E., Hădărugă, D.I., Hădărugă, Pĭnzaru, I.A., Bandur, G., Urşica, Păunescu, V., and Gruia, A., 2008. Flavonoid Contents of Propolis from the West side of Romania and Correlation with the Antioxidant Activity. Chemical Bulletin 53(67), 1-2.

Dang, T.T., Bowyer, M.C., Van Altena, I.A., and Scarlett, C.J., 2017. Optimum Conditions of Microwave-Assisted Extraction for Phenolic Compounds and Antioxidant Capacity of the Brown Alga Sargassum vestitum. Separation Science and Technology 53, 1711–1723. doi: 10.1080/01496395.2017.1414845.

Departemen Kesehatan R.I., 1992. Cara Pembuatan Obat Tradisional Yang Baik. Departemen Kesehatan Republik Indonesia, Jakarta.

Departemen Kesehatan Republik Indonesia, 1995. Farmakope Indonesia, Edisi IV. Departemen Kesehatan Republik Indonesia, Jakarta.

Farris, S., and Piergiovanni, L., 2009. Optimization of Manufacture of Almond Paste Cookies using Response Surface Methodology. Journal of Food Process Engineering 32(1), 64–87. doi: 10.1111/j.1745-4530.2007.00203.x.

Haminiuk, C. W. I., Maciel, G. M., Plata-Oviedo, M. S. V., and Peralta, R. M. 2012., Phenolic Compounds in Fruits – An overview. International Journal of Food Science & Technology 47(10), 2023–2044. doi:10.1111/j.1365-2621.2012.03067.x.

He, Q., Du, B., and Xu, B., 2018. Extraction Optimization of Phenolics and Antioxidants from Black Goji Berry by Accelerated Solvent Extrator Using Response Surface Methodology. Applied Sciences 8, 1905. doi: 10.3390/app8101905.

Horowitz, R.M., 1957. Flavonoids of citrus. II. Isolation of a New Flavonol from Lemons. Journal of The American Chemical Society 79, 6561.

Kementrian Kesehatan R.I., 2011. Suplemen II Farmakope Herbal Indonesia Edisi I. Direktorat Jenderal Bina Kefarmasian dan Alat Kesehatan, Jakarta.

Luthria, D. L., 2008. Influence of Experimental Conditions on the Extraction of Henolic Compounds from Parsley (Petroselinum crispum) Flakes Using a Pressurized Liquid Extractor. Food Chemistry 107(2), 745–752. doi:10.1016/j.foodchem.2007.08.074.

Maharany, F., Nurjanah., Suwandi, R., Anwar, E., and Hidayat, T., 2017. Kandungan Senyawa Bioaktif Rumput Laut Padina australis dan Eucheuma cottonii sebagai Bahan Bahku Krim Tabir Surya. Jurnal Pengolahan Hasil Perikanan Indonesia 20(1), 10-17. doi: 10.17844/jphpi.v20i1.16553.

Pereira, L., 2018. Therapeutic and Nutritional Uses of Algae. CRC Press, Portugal.

Pew, J.C., 1948. A Flavonone from Douglas-fir heartwood. Journal of The American Chemical Society 70, 3031–3034. doi: 10.1021/ja01189a059.

Putrinesia, I., Tobing, Y.P.L., Asikin, N., and Rahmalia, W., 2018. Formulasi dan Uji Aktivitas Krim Pengkelat Merkuri Berbahan Dasar Ekstrak Etanol Alga Coklat (Sargassum sp.). Alchemy: Jurnal Penelitian Kimia 14(1), 152-163. doi: 10.20961/alchemy.14.1.12242.152-163.

Routray, W. and Orsat, V., 2012. Microwave-Assisted Extraction of Flavonoid: A Review. Food Bioprocess Technology 5, 409-424. doi: 10.1007/s11947-011-0573-z.

Santoso, J., S. Gunji, Y. Yoshie-Stark, and T. Suzuki., 2006. Mineral Content of Indonesian Seaweeds and Mineral Solubility Affected by Basic Cooking. Food Science and Technology Research 12(1), 59-66. doi: 10.3136/fstr.12.59.

Saxena, M., Saxena, J., Nema, R., Singh, D. and Gupta, A., 2013. Phytochemistry of Medicinal Plants. Journal of Pharmacognosy and Phytochemistry 1(6), 168-180.

Setyaningsih, W., Saputro, I.E., Palma, M., and Barroso, C.G., 2015. Optimisation and Validation of the Microwave-Assisted Extraction of Phenolisc Compounds from Rice Grains. Food Chemistry 169, 141-49. doi: 10.1016/j.foodchem.2014.07.128.

Silberfeld, T., Bittner, L., Garcia, C.F., Cruaud, C., Rousseau, F., Reviers, B., Leliaert, F., Payri, C.E., and Clerk, O.D., 2013. Species Diversity, Phylogeny and Large Scale Biogeographic Patterns of the Genus Padina (Phaeophyceae, Dictyotales). Journal of Phycology 49, 130-142. doi.org/10.1111/jpy.12027.

Spigno, G., and De Faveri, D.M., 2009. Microwave-Assisted Extraction of Tea Phenols: A Phenomenological Study. Journal of Food Engineering 93, 210-217. doi: 10.1016/j.jfoodeng.2009.01.006.

Shinoda, J., 1928. A New Biologically Active Flavone Glycoside from the Roots of Cassia fistula Linn. Journal of The Pharmaceutical Society of Japan 48, 214-220.

Suharto, K.F., Soetjipto, H., dan Martono, Y., 2017. Pengaruh Lama Fermentasi Tempe terhadap Kandungan Total Senyawa Fenolik dan Isoflavon Genistein. Alchemy: Jurnal Penelitian Kimia 13(2), 230-240. doi: 10.20961/alchemy.v13i2.5094.

Szydϯowska-Czerniak, A., Trokowski, K., and Szϯyk, E., 2011. Optimization of Extraction Conditions of Antioxidants from Sunflower Shells (Helianthus annuus L.) Before and After Enzymatic Treatment. Industrial Crops and Products 33, 123-131. doi: 10.1016/j.indcrop.2010.09.016.

Refbacks

  • There are currently no refbacks.