Komposit Polianilina/Kitosan/Perak Nanowires Sebagai Elektrokatalis Reaksi Evolusi Hidrogen dalam Medium Netral

Fadli Fakhrullah, Purwantiningsih Sugita, Mohammad Khotib, Takeno Akiyoshi, Shinya Takahashi

Abstract

Studi mengenai elektrokatalis untuk reaksi evolusi hidrogen (HER) dan evolusi oksigen (OER) sangat diperlukan terkait aplikasinya dalam pengembangan energi terbarukan berbasis hidrogen. Komposit perak nanowires (AgNWs) dengan polianilina (PANI) disiapkan dengan metode polimerisasi radikal dalam larutan matriks kitosan untuk menurunkan ukuran partikel PANI. Komposit disintesis dengan 3 perlakuan yang berbeda, yaitu perlakuan suhu ruang, suhu rendah, dan sonikasi. Aktivitas elektrokatalisis diukur dengan voltammetri sapuan linear (LSV). Informasi tentang densitas arus pertukaran dan overpotensial sebagai variabel utama pengukuran aktivitas elektrokatalisis diperoleh dari plot Tafel pada LSV. Semua komposit dengan perlakuan suhu dan sonikasi menunjukkan karakter katodik berdasarkan nilai overpotensialnya yang negatif (aktivitas HER), sedangkan komposit dengan perlakuan suhu rendah memiliki karakter anodik (aktivitas OER).

A Composite of   Polyaniline/Chitosan/Silver Nanowires as Hydrogen Evolution Electrocatalyst in Neutral Medium. Study on electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is urgently needed related to its application in hydrogen-based renewable energy development. A composite of silver nanowires (AgNWs) with polyaniline (PANI) was prepared by radical polymerization method in chitosan matrix solution to reduce the PANI particle size. Each composite was synthesized under three different treatment conditions, which are room temperature, low temperature, and sonication. Linear sweeping voltammetry (LSV) was conducted to measure electrocatalytic activity of the composites. Information about exchange current density and overpotential as important variables in this field were obtained from Tafel plot in the LSV. The temperature and sonication-treated composites have cathodic character due to its negative overpotential (HER activity), while low temperature-treated composites have anodic character (OER activity).

Keywords

PANI; AgNWs; elektrokatalis HER-OER; overpotensial; densitas arus pertukaran

Full Text:

PDF

References

Afriani, L., 2017. Elektrokatalisis Evolusi Oksigen Berbasis Kalsium Ferit Terdoping Tembaga. Skripsi. Institut Pertanian Bogor, Bogor (ID).

Bard, A.J., and Faulkner, L.R., 2001. Electrochemical Method-Fundamental and Application. J. Wiley and Son, Inc., New York (US).

Boeva, Z.A., and Sergeyev, V.G., 2013. Polyaniline: Synthesis, Properties, and Application. Polymer Science Series C 56(1), 144-153. doi : 10.1134/S1811238214010032.

Cheng, Q., Tang, J., Shinya, N., and Qin, L., 2013. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. Journal of Power Sources 241, 423-428. doi : 10.1016/j.jpowsour.2013.04.105.

Dhand, C., Solanki, P.R., Datta, M., and Malhotra, B.D., 2010. Polyaniline/Single-Walled Carbon Nanotubes Composite Based Triglyceride Biosensor. Electroanalysis 22: 2683-2693. doi:10.1002/elan.201000269

Fang, F., Li, Y.Q., Xiao, H.M., Hu, N., and Fu, S.Y., 2016. Layer-structured silver nanowires/polyaniline composite film as a high performance X-band EMI shielding material. Journal of Materials Chemistry C 4, 4193-4203. doi : 10.1039/C5TC04406E.

Gu, Y., and Huang, J., 2013. Colorimetric detection of gaseous ammonia by polyaniline nanocoating of natural cellulose substances. Journal of Colloids and Surfaces A 433, 166-172. doi : 10.1016/j.colsurfa.2013.05.016.

Jalaluddin, A., 2010. Technical Textile Yarns. Woodhead Publishing, Cambridge (UK).

Jang, J., Ha, J., and Kim, K., 2008. Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer. Thin Solid Films 516(10), 3152-3156. doi : 10.1016/j.tsf.2007.08.088.

Jiang, N., Xu, Y., Dai, Y., Luo, W., and Dai, L., 2012. Polyaniline nanofibers assembled on alginate microsphere for Cu2+ and Pb2+ uptake. Journal of Hazardous Materials 215-216, 17-24. doi : 10.1016/j.jhazmat.2012.02.026.

Kim, J.Y., and Park, Y.J., 2017. Carbon nanotube/Co3O4 nanocomposites selectively coated by polyaniline for high performance air electrodes. Scientific Reports 7, 8610. doi : 10.1038/s41598-017-09219-9.

Kumar, A.B.V.K., Jiang, J., Bae, C.W., Seo, D.M., Piao, L., and Kim, S.H., 2014. Silver nanowire/polyaniline composite transparent electrode with improved surface properties. Materials Research Bulletin 57, 52-57. doi : 10.1016/j.materresbull.2014.05.031.

Landon, J., Demeter, E., Inoglu, N., Keturakis, C., Wachs, I.E., Vasic, R., Frenkel, A.I., and Kitchin, J.R., 2012. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catalysis 2(8), 1793-1801. doi : 10.1021/cs3002644.

Lestari, L.C., 2016. Elektrokatalisis Evolusi Oksigen Berbasis Kalsium Ferit dan Dopingnya dengan Zn. Skripsi. Institut Pertanian Bogor, Bogor (ID).

Lin, H., Huang, Q., Wang, J., Jiang, J., Liu, F., Chen, Y., Wang, C., Lu, D., and Han, S., 2016. Self-assembled graphene/polyaniline/CO3O4 ternary hybrid aerogels for supercapacitors. Electrochimica Acta 191, 444-451. doi : 10.1016/j.electacta.2015.12.143.

Liu, W., Hu, E., Jiang, H., Xiang, Y., Weng, Z., Li, M., Fan, Q., Yu, X., Altman, E.I., and Wang, H., 2016. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications 7, 10771. doi : 10.1038/ncomms10771.

Liu, Y., Li, J., Li, F., Li, W., Yang, H., Zhang, X., Liu, Y., and Ma, J., 2016. A facile preparation of CoFe2O4 nanoparticles on polyanliline-functionalized carbon nanotubes as enhanced catalyst for the oxygen evolution reaction. Journal of Materials Chemistry A 12(4), 4472-4478. doi : 10.1039/C5TA10420C

Mansoor, S.S., Aswin, K., Hussain, A.M., Logaiya, K., and Sudhan, P.N., 2012. Synthesis of nanostructured polyaniline (PANI) using chitosan by chemical oxidation method via interfacial polymerization. Der Chemica Sinica 3(3): 683-688.

Nascimento, G.M.D., 2010. Spectroscopy of Polyaniline Nanofibers. Nanofibers, 349-366. doi : 10.5772/8162.

Niu, L., Li, Q., Wei, F., Wu, S., Liu, P., and Cao, X., 2005. Electrocatalytic behaviour of Pt-modified polyaniline electrode for methanol oxidation: Effect of Pt deposition modes. Journal of Electroanalytical Chemistry 578(2), 331-337. doi : 10.1016/j.jelechem.2005.01.014.

O’Hayre, R., Cha, S.W., Collela, W., and Prinz, F.B., 2016. Fuel Cell Fundamentals. John Wiley & Sons, Inc., New Jersey (US).

Ratuchne, F., Danczuk, M., Castro, E.G., 2018. Enhanced Stability and Conductivity of (polyaniline-chitosan) Composites. Orbital: The Electronic Journal of Chemistry 10(3), 239-246. doi : 10.17807/orbital.v10i3.1110.

Shahzadi, K., Wu, L., Ge, X., Zhao, F., Li, H., Pang, S., Jiang, Y., Guan, J., and Mu, X., 2016. Preparation and Characterization of bio-based hybrid film containing chitosan and silver nanowires. Carbohydrate Polymers 137, 732-738. doi : 10.1016/j.carbpol.2015.11.012.

Shobin, L.R., and Manivannan, S., 2014. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electronic Materials Letters 10(6), 1027-1031. doi : 10.1007/s13391-014-4013-x.

Sugita, P., Ambarsari, L., and Lidiniyah., 2015. Optimization of ketoprofen-loaded chitosan nanoparticle ultrasonication process. Procedia Chemistry 16, 673-680. doi : 10.1016/j.proche.2015.12.007.

Tang, X., Tsuji, M., Jiang, P., Nishio, M., Jang, S.M., and Yoon, S.H., 2009. Rapid and high yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 338(1-3), 33-39. doi : 10.1016/j.colsurfa.2008.12.029.

Vetter, K.J., 1967. Electrochemical Kinetics: Theoritical Aspects. Academic Press., London (UK).

Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S., 2010. Solar water splitting cells. Chemical Reviews 110(11), 6446-6473. doi : 10.1021/cr1002326.

Wang, W., Wei, X., Choi, D., Lu, X., Yang, G., and Sun, C., 2015. Electrochemical cells for medium- and large-scale energy storage. Advances in Batteries for Medium- and Large-scale Energy Storage, edited by C. Menictas, M. Skyllas-Kazacoz, and L.T. Mariana, 3-28. Woodhead Publishing, Massachusetts.

Yavuz, A.G., Uygun, A., and Bhethanabotla, V.R., 2009. Substituted polyaniline/chitosan composites: Synthesis and characterization. Carbohydrate Polymers. 75(3):448-453. doi : 10.1016/j.carbpol.2008.08.005.

Zhang, A.Q., Cai, L.J., Sui, L., Qian, D.J., and Chen, M., 2013. Reducing properties of polymers in the synthesis of noble metal nanoparticles. Polymer Reviews 53(2), 240-276. doi : 10.1080/15583724.2013.776587.

Zhao, L., Zhao, L., Xu, Y., Qiu, T., Zhi, L., and Shi, G., 2009. Polyaniline electrochromic devices with transparent graphene electrodes. Electrochimica Acta 55(2), 491-497. doi : 10.1016/j.electacta.2009.08.063.

Zhou, Q., and Shi, G., 2016. Conducting polymer based catalyst. Journal of The American Chemical Society 138, 2868-2876. doi : 10.1021/jacs.5b12474.

Refbacks

  • There are currently no refbacks.