Studi In Silico Metabolit Sekunder Kapang Monascus sp. sebagai Kandidat Obat Antikolesterol dan Antikanker

Marlia Singgih, Benny Permana, Selvira Anandia Intan Maulidya, Anna Yuliana


Kapang Monascus sp. secara tradisional telah digunakan dalam fermentasi beras merah (angkak) yang bermanfaat sebagai pewarna makanan, pengawet makanan maupun obat-obatan. Saat ini, beras angkak telah menjadi suplemen makanan yang terkenal karena banyaknya senyawa bioaktif yang terkandung seperti monakolin, pigmen, asam dimerumat dan lain-lain. Tujuan penelitian ini adalah untuk menemukan metabolit sekunder kapang Monascus sp. yang meliputi senyawa monakolin dengan efek antikolesterol, pigmen dengan efek antikanker pada kanker payudara serta memprediksi toksisitas senyawa melalui studi in silico. Senyawa uji terdiri dari 14 senyawa monakolin dan 33 pigmen Monascus sp. Protein HMG KoA (3-hidroksi-3-metilglutaril koenzim A) reduktase digunakan sebagai reseptor antikolesterol sementara estrogen alfa, estrogen beta, dan aromatase digunakan sebagai reseptor antikanker. Perangkat lunak AutoDock digunakan untuk menganalisis kompleks struktural reseptor dengan senyawa uji. Prediksi toksisitas dilakukan menggunakan perangkat lunak ADMET predictor dan QSAR Toolbox. Prediksi toksisitas dan hasil docking menunjukkan bahwa asam monakolin L menunjukkan aktivitas antikolesterol yang baik terhadap HMG KoA reduktase; pigmen monaskin menunjukkan aktivitas antikanker yang selektif terhadap reseptor estrogen beta; dan keduanya diprediksi aman. Prediksi toksisitas senyawa monakolin dan pigmen Monascus sp. menunjukkan terdapat 7 senyawa monakolin yaitu 3-hidroksi-3,5-dihidromonakolin L, asam dihidromonakolin L, monakolin L, asam monakolin J, monakolin J, asam monakolin L , monakolin M, dan 5 pigmen Monascus sp. yaitu ankaflavin, monaskin, monaskopiridin A, monaskopiridin B dan monascuspiloin yang dinyatakan tidak toksik. Tujuh pigmen Monascus sp. yang terdiri dari monankarin A, monankarin B, monankarin C, monankarin D, monankarin E, monankarin F, dan monasfluol A bersifat positif mutagen, karsinogen dan toksik terhadap reproduksi. Hasil penelitian ini berpotensi dapat diaplikasikan untuk desain dan pengembangan obat antikolesterol dan antikanker.

In Silico Study of Secondary Metabolites of Monascus sp. as A Candidate for Anticholesterol and Anticancer Drugs. The fungus Monascus sp. has traditionally been used to prepare red fermented rice (angkak) as a natural food colorant, food preservative or medicinal agent. Recently, it has become a popular dietary supplement due to many of its bioactive constituents such as monacolin compounds, pigments, and dimerumic acid, etc. These functional constituents also had been deemed to be provided with various health benefits. This research aims to find secondary metabolites of monacolin compounds with antihypercholesterolemic effect, Monascus sp. pigment with anticancer effect on breast cancer, and predict their toxicity through in silico study. The studied compounds consist of 14 monacolin compounds and 33 Monascus sp. pigments. HMG CoA (3-hydroxy-3-methylglutaryl Coenzyme A) reductase protein was used as antihypercholesterolemic receptor in which estrogen alfa, estrogen beta, and aromatase were used as anticancer receptors. AutoDock docking software was used to analyze structural complexes of the receptors with studied compounds. Toxicity prediction was done using ADMET predictor and QSAR Toolbox softwares. Toxicity prediction and docking results revealed that monacolin L acid exhibits good anticholesterol activity towards HMG CoA reductase; monascin pigment exhibits selective anticancer activity towards estrogen beta receptor; and both of them were predicted to be safe. Toxicity prediction of studied compounds showed that 7 monacolin compounds which are 3-hydroxy-3,5-dihydromonakolin L, dihydromonacolin L acid, monacolin L, monacolin J acid, monacolin J, monacolin L acid, monacolin M and 5 Monascus sp. pigments which are ankaflavin, monascin, monascopyridine A, monascopyridine B dan monascuspiloin are not toxic. Seven Monascus sp. pigments which are monankarin A, monankarin B, monankarin C, monankarin D, monankarin E, monankarin F and monasfluol A are mutagenic, carcinogenic and also reprotoxic. The research results could be useful for the design and development of the anticholesterol and anticancer drugs.


in silico; Monascus sp.; secondary metabolite; toxicity

Full Text:



Benigni, R., and Bossa, C. 2011. Mechanisms of Chemical Carcinogenicity and Mutagenicity: A Review with Implications for Predictive Toxicology. Chemical Reviews 111, 2507-2536.

Bouker, K. B., and Hilakivi-Clarke, L. 2000. Genistein: Does It Prevent or Promote Breast Cancer?. Environmental Health Perspectives 108, 701-708.

Chairunnisa, A., and Runadi, D. 2016. Aktivitas Kalkon Terhadap Reseptor Estrogen  (ER-) Sebagai Antikanker Payudara Secara In Vitro dan In Silico: Review. Farmaka 14, 1-8.

Corton, J. C., Lapinskas, P., and Gonzalez, F. J. 2000. Central Role of PPARa in The Mechanism of Action of Hepatocarcinogenic Peroxisome Proliferators. Mutation Research 448, 139-151.

Dassault Systèmes BIOVIA. Discovery Studio. 2017. Dassault Systèmes, San Diego.

Fatima, N., Kalsoom, A., Mumtaz, A., and Muhammad, S. A. 2014. Computational drug designing of fungal pigments as potential aromatase inhibitors. Bangladesh Journal Pharmacological 9, 575-579.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., and Caricato, M., 2016. Gaussian, Inc., Wallingford CT.

Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship Models ENV/JM/MONO 2, 2007. OECD.

Guidance on Labelling and Packaging in Accordance with Regulation (EC) No 1272/2008, 2016. European Chemicals Agency, Finlandia.

Heinz, T., Schuchardt, J. P., Moller, K., Hadji, P., and Hahn, A. 2016. Low Daily Dose of 3 mg Moheinznacolin K from RYR Reduces The Concentration of LDL-C in A Randomized, Placebo-Controlled Intervention. Nutrition Research 36, 1162-1170.

Ho, B. Y., and Pan, T. M. 2009. The Monascus Metabolite Monakolin K Reduces Tumor Progression and Metastasis of Lewis Lung Carcinoma Cells. Journal of Agricultural and Food Chemistry 57, 8258-8265.

Koleva, Y. K., Madden, J. C., and Cronin, M. T. D. 2008. Formation of Categories from Structure-Activity Relationships to Allow Read-Across for Risk Assessment: Toxicity of ,-Unsaturated Carbonyl Compounds. Chemical Research in Toxicology 21, 2000-2012.

Koli, S. H., Suryawanshi, R. K., Patil, C. D., and Patil, S. V. 2017. Bio-pigmentation and Biotechnological Implementatios. John Wiley & Sons Inc, USA.

Lake, B. G. 1999. Coumarin Metabolism, Toxicity and Carcinogenicity: Relevance for Human Risk Assessment. Food and Chemical Toxicology 37, 423-453.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. 2009. Autodock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexiblity. Journal of Computational Chemistry 16, 2785-91.

Nguyen, T., Karl, M., and Santini, A. 2017. Red Yeast Rice. Foods Multidisciplinary Digital Publishing Institute 6, 19.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. 2011. Open Babel: An Open Chemical Toolbox. Journal of Cheminformatics 3, 33.

Raies, A. B., and Bajic, V. B. 2016. In Silico Toxicology: Computational Methods for The Prediction of Chemical Toxicity. Wiley Interdisciplinary Reviews: Computational Molecular Science 6, 147–172.

Reddy, J. K., dan Rao, M.S. 1989. Oxidative DNA Damage Caused by Persistent Peroxisome Proliferation: Its Role in Hepatocarcinogenesis. Mutation Research 214, 63-68.

Sabry, O. M. M. 2016. A New HPLC Method for Analysis of Natural Monakolin K in Red Yeast Rice Pharmaceutical Preparations. Journal of Pharmacognosy and Natural Products 1, 1-4.

Seyedin, A., Yazdian, F., Hatamian-Zarmi, A., Rasekh, B., and Mir-derikvand, M. 2015. Natural Pigment Production by Monascus Purpureus: Bioreactor Yield Improvement through Statistical Analysis. Applied Food Biotechnology 2, 23-30.

Sherman, W., Beard, H. S., and Farid, R. 2006. Use of An Induced Fit Receptor Structure in Virtual Screening. Chemical Biology & Drug Design 67, 83-84.

Valerio, L. G., and Cross K. P. 2012. Characterization and Validation of An In Silico Toxicology Model to Predict The Mutagenic Potential of Drug Impurities. Toxicology and Applied Pharmacology 260, 209-221.

Watkins, P. B., pisetsky, D. S., Park, K., Kaplowitz, N., Roth, R. A., and Uetrecht, J. 2018. Simulations Plus Company.

Wongjewboot, I., and Kongruang, S. 2011. pH stability of ultrasonic thai isolated monascus purpureus pigments. International Journal of Bioscience. Biochemistry and Bioinformatics 1, 79-83.

Woo, Y. T., and Lai, D. Y. 2005. Predictive toxicology. Taylor and Francis, UK.

Yuliana, A., Singgih, M., Julianti, E., and Blanc, P. J. 2017. Derivates of Azaphilone Monascus Pigments. Biocatalysis and Agricultural Biotechnology 9, 183-194.


  • There are currently no refbacks.