CATALYTIC ACTIVITY CoMo/USY ON DEOXYGENATION REACTION OF 4-METHOXYPHENOL IN BATCH REACTOR

Khoirina Dwi Nugrahaningtyas, Irma Fadhila Putri, Eddy Heraldy

Abstract

This research was conducted to study the effect of catalyst type of CoMo/USY and the reaction time on the deoxygenation reaction of 4-methoxyphenol. The catalyst type used were CoMo/USY, Co-Mo/USY, and Mo-Co/USY. The product was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The activity of the Co-Mo/USY catalyst is higher than CoMo/USY and Mo-Co/USY, it can be seen from the value of total yield and the selectivity. The Co-Mo/USY catalysts shows a significant increasing on the total yield percentage (from 3.71 % to 9.41 %) during catalytic testing. The Co-Mo/USY catalyst has a highest selectivity toward 1,4-dimethoxybenzene product when the reaction time was one hour (0.92 %) and selectivity toward 1,4-dihidroxybenzene when reaction time two hours (0.43 %).

Keywords

4-methoxyphenol; catalytic activity; deoxygenation; the CoMo/USY catalyst

Full Text:

PDF

References

Annisa, G., 2012. Hidrodeoksigenasi Bio-Oil Menggunakan Katalis CoMo/C untuk Optimasi Produksi Alkana dan Alkohol. Skripsi. Universitas Indonesia.

Aqsha, A., Mahinpey, N., Katta, L., Gras, L., and Lim, C.J., 2014. Synthesis of novel catalysts for hydrodeoxygenation of bio-oil: Guaiacol as a model component. WIT Transactions on Ecology and the Environment 186, 489–498.

Fisk, C.A., Morgan, T., Ji, Y., Crocker, M., Crofcheck, C., and Lewis, S.A., 2009. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Applied Catalysis A: General 358(2), 150–156.

González-Borja, M.Á. and Resasco, D.E., 2011. Anisole and guaiacol hydrodeoxygenation over monolithic Pt-Sn catalysts. Energy and Fuels 25 (9), 4155–4162.

Hong, Y.K, Lee, D.W, Eom, H.J., and Lee, K.Y., 2014. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol, Applied Catalysis B : Environmental 150-151, 438–445.

Jin, S., Xiao, Z., Li, C., Chen, X., Wang, L., Xing, J., Li, W., and Liang, C., 2014. Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts. Catalysis Today 234, 125–132.

Jongerius, A.L., Robin, J., Pieter, C.A., and Bert, M., 2012. CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. Journal of Catalysis 285 (1), 315–323.

Kadarwati, S., Susatyo, E.B., and Ekowati, D., 2010. Aktivitas Katalis Cr/Zeolit Alam pada Reaksi Konversi Minyak Jelantah Menjadi Bahan Bakar Cair. Jurnal Sains dan Teknologi 8 (1), 9-16.

Kubicka, D., 2010. Deoxygenation of vegetable oils over sulfided Ni , Mo and NiMo catalysts ˇ k Kaluz. Applied Catalysis A: General 372, 199–208.

Larabi, C., Maksoud, W.A., Szeto, K.C., Garron, A., Arquilliere, P.P., Walter, J.J., and Santini, C.C.. 2016. Design of plurimetallic catalysts for solid biomass conversion : Batch versus continuous reactors. Fuel Processing Technology 142, 192–200.

Li, K., Wang, R., and Chen, J., 2011. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts. Energy and Fuels 25, 854–863.

Mora, I.D., Mendez, E., Duarte, L.J., and Giraldo, S.A., 2014. Effect of support modifications for CoMo/γ-Al2O3 and CoMo/ASA catalysts in the hydrodeoxygenation of guaiacol. Applied Catalysis A: General 474, 59–68.

Mortensen, P.M., Grundwalt, J.D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., 2011. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 407 (1-2), 1–19.

Nugrahaningtyas, K.D., Hidayat, Y., and Saputri, T.D., 2014. Effect of Concentration Metal Precusor Co and Mo on Character of CoMo/USY Catalyst. Alchemy Jurnal Penelitian Kimia 10 (2), 148–156.

Osakoo, N., Henkel, R., Loiha, S., Roessner, F., and Wittayakun, J., 2015. Comparison of PdCo/SBA-15 Prepared by Co-impregnation and Sequential Impregnation for Fischer-Tropsch Synthesis. Catalysis Communications 66, 73-78.

Rachmadhani. 2016. Pengaruh Proses Kalsinasi dan Reduksi Terhadap Karakter Katalis Sistem Logam Pengemban (Co dan Mo)/Ultra Stable Y Zeolite. Skripsi. Universitas Sebelas Maret Surakarta.

Rawat, K., Kumar, S.M., Gupta, J.K., Bal, R., Dhar, G.M., and Datta, A., 2010. Catalytic Fuctionality of NiMo and CoMo Catalyst, Supported on US-Y Zeolite for Hydrotreating Processes. Catalytic Conversion Processes Division. Indian Institute of Petroleum.

Viljava, T.R., Komulainen, R.S. and Krause, A.O.I., 2000. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catalysis Today 60, 83–92.

Wang, W., Yunquan, Y., Hean, L., Tao, H., and Wenying, L. 2011. Preparation and Hydrodeoxygenation Properties of Co-Mo-O-B Amorphous Catalyst. Catalyst Communication, 12, 436-420.

Won, H.L, Jun, B.R., Kim, H., Kim, D.H., Jeon, J., Park, S.H., Ko, C.H., Kim, T., and Park, Y., 2015. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites. Energy 81, 33–40.

Zhu, X., Lobban, L.L., Mallinson, R.G., and Resasco, D.E., 2011. Bifunctional Transalkylation and Hydrodeoxygenation of Anisole over Pt/HBeta Catalyst. Journal of Catalysis 281, 21-29.

Refbacks

  • There are currently no refbacks.