Desulfurisasi Katalitik Tiofen Menggunakan Katalis CoMo/USY dalam Reaktor Batch
Abstract
Telah dilakukan uji aktivitas katalis CoMo/USY pada reaksi desulfurisasi tiofen. Reaksi dilakukan pada reaktor sistem batch dengan tekanan gas N2 sebesar 1 bar gas N2 dan waktu reaksi selama 1 jam. Penelitian ini bertujuan untuk mengetahui pengaruh variasi temperatur dan variasi karakter katalis pada reaksi desulfurisasi tiofen. Product desulfurisasi dianalisis dengan Gas Chromatography - Mass Spectra (GC-MS). Karakter kestabilan struktur katalis dilihat dengan analisis menggunakan instrumen Fourier Transform Infrared Spectroscopy (FT-IR). Hasil analisis terhadap uji aktivitas desulfurisasi menunjukkan bahwa pada rentang temperatur 200-300°C, rendemen bertambah dengan meningkatnya temperatur. Pada penelitian telah berhasil menghidrogenasi tiofen, tetapi belum bisa menghilangkan kandungan sulfurnya. Adapun efek karakter katalis terhadap aktivitas katalitiknya menunjukkan bahwa karakter katalis yang paling dominan adalah sifat keasaman. Katalis dengan keasaman tertinggi, yaitu katalis CoMo/USY, memiliki aktivitas tertinggi dengan rendemen produk sebesar 2,88%. Hasil analisis FT-IR terhadap katalis bekas menunjukkan bahwa struktur cukup stabil dan tidak ada pengotor yang terikat pada katalis.
Catalytic Desulfurization of Thiophene using CoMo/USY Catalyst in Batch Reactor. CoMo/USY catalyst activity has been tested for thiophene desulfurization reaction. The reaction was carried out in batch system reactor with N2 gas pressure of 1 bar and reaction time for 1 hour. This study aims to determine the effect of temperature variation and catalyst character variation in thiophene desulfurization reaction. The desulfurization products were analyzed by Gas Chromatography - Mass Spectra (GC-MS). The characters of structure catalyst were analyzed by Fourier Transform Infrared Spectroscopy (FT-IR). The results of the analysis of the desulfurization activity test showed that in the temperature range 200-300 °C, the yield raised with increasing temperature. The analysis results of the desulfurization activity test showed that in the temperature range of 200-300°C, the yield raised with increasing temperature. The study has successfully hydrogenated thiophene, but has not been able to eliminate the sulfur content. The effect of the catalysts character on its catalytic activity shows that the most dominant character of the catalysts was its acidity. The highest acidity catalyst, CoMo/USY catalyst, has highest activity with the product yield of 2,88%. The result of the FTIR analysis on the used catalyst show that the structure was stable and no impurities were attached the catalyst.
Keywords
Full Text:
PDFReferences
Boukoberine, Y. and Hamada, B., 2016. Thiophene Hydrodesulfurization Over CoMo/Al2O3-CuY Catalysts: Temperature Effect Study. Arabian Journal of Chemistry 9, S522–S527.
Deng, L., Shinshido, T., Teramura, K. and Tanaka, T., 2014, Effect of Reduction Method on the Activity of Pt-Sn/SiO2 for Dehydrogenation of Propane, Catalysis Today, 232, 33–39.
Jarullah, A.T., Mujtaba, I.M. and Wood, A.S., 2011. Kinetic Parameter Estimation And Simulation Of Trickle-Bed Reactor For Hydrodesulfurization Of Crude Oil. Chemical Engineering Science 66(5), 859–871.
Jeevanandam, P., Klabunde, K.J. and Tetzler, S.H., 2005. Adsorption of Thiophenes Out Of Hydrocarbons Using Metal Impregnated Nanocrystalline Aluminum Oxide. Microporous and Mesoporous Materials 79(1–3), 101–110.
Larabi, C., Al Maksoud, W., Szeto, K.C., Garron, A., Arquilliere, P.P., Walter, J.J. and Santini, C.C., 2016. Design of Plurimetallic Catalysts for Solid Biomass Conversion: Batch Versus Continuous Reactors. Fuel Processing Technology
, 192–200.
Liu, B., Zhao, Z., Wang, D., Liu, J., Chen, Y., Li, T., Duan, A. and Jiang, G., 2015. A Theoretical Study On The Mechanism For Thiophene Hydrodesulfurization Over Zeolite L-Supported Sulfided CoMo Catalysts: Insight Into The Hydrodesulfurization Over Zeolite-Based Catalysts. Computational and Theoretical Chemistry 1052, 47–57.
Moses, P.G., Hinnemann, B., Topsøe, H. and Nørskov, J.K., 2007. The Hydrogenation and Direct Desulfurization Reaction Pathway In Thiophene Hydrodesulfurization Over Mos2 Catalysts At Realistic Conditions: A Density Functional Study. Journal of Catalysis 248(2), 188–203.
Nava, R., Ortega, R.A., Alonso, G., Ornelas, C., Pawelec, B. and Fierro, J.L.G., 2007. CoMo/Ti-SBA-15 Catalysts For Dibenzothiophene Desulfurization. Catalysis Today 127(1–4), 70–84.
Nugrahaningtyas, K.., Trisunaryanti, W., Widjnarko, D.M. and Yusnani, A., 2009. Preparation and Characterization The Non-Sulfided Metal catalyst: Ni/USY and NiMo/USY. Indonesian Journal Chemistry 9(2), 177–183.
Nugrahaningtyas, K.D., Hidayat, Y. and Saputri, T.D., 2014. Effect Of Concentration Metal Precursor Co and Mo on Character of CoMo / USY Catalyst. Alchemy: Jurnal Penelitian Kimia 10(1), 40–48.
Pawelec, B., Castaño, P. and Zepeda, T.A., 2008. Morphological Investigation of Nanostructured CoMo Catalysts. Applied Surface Science 254(13), 4092–4102.
Pawelec, B., Fierro, J.L.G., Montesinos, A. and Zepeda, T.A., 2008. Influence Of The Acidity Of Nanostructured CoMo/P/Ti-HMS Catalysts on the HDS of 4,6- DMDBT Reaction Pathways. Applied Catalysis B: Environmental 80(1–2), 1–
Popov, A., Kondratieva, E., Goupil, J.M., Mariey, L., Bazin, P., Gilson, J.P., Travert, A.
and Maugé, F., 2010. Bio-Oils Hydrodeoxygenation: Adsorption Of Phenolic Molecules On Oxidic Catalyst Supports. Journal of Physical Chemistry C 114(37), 15661–15670.
Rachmadhani, 2016. Pengaruh Proses Kalsinasi dan Reduksi Terhadap Karakter Katalis Sistem Logam-Pengemban (Co dan Mo)/Ultra Stable Y Zeolite. Skripsi ed. Universitas Sebelas Maret.
Ravanchi, M.T. and Sahebdelfar, S., 2016. Pd-Ag/Al2O3 Catalyst: Stages Of Deactivation In Tail-End Acetylene Selective Hydrogenation. Applied Catalysis A: General 525, 197–203.
Rawat, K., Kumar, M., Gupta, J., Bal, R., Dhar, G. and Data, A., 2010. Catalytic Functionality of NiMo and CoMo Catalysts, Supported on US-Y Zeolite for Hydrotreating Processes. In: 20th National Symposium on Catalysis for Energy Conservation of Environ pp.19–22.
Souza, M.J.B., Garrido Pedrosa, A.M., Cecilia, J.A., Gil-Mora, A.M. and Rodríguez- Castellón, E., 2015. Hydrodesulfurization of dibenzothiophene over PtMo / MCM-48 catalysts. Catalysis Communications 69, 217–222.
Sullivan, D.L. and Ekerdt, J.G., 1998. Mechanisms of thiophene hydrodesulfurization on model molybdenum catalysts. Journal of Catalysis 178, 226–233.
Topsøe, H., Clausen, B.S. and Massoth, F.E., 1996. Hydrotreating Catalysis. In: Catalysis 1–269.
Torres-Mancera, P., Ramı`rez, J., Cuevas, R., Gutie´rrez-Alejandre, A., Murrieta, F. and Luna, R., 2005. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catalysis Today 107–108, 551–558.
Wang, H. and Iglesia, E., 2010. Thiophene Hydrodesulfurization Catalysis On Supported Ru Clusters: Mechanism and Site Requirements For Hydrogenation And Desulfurization Pathways. Journal of Catalysis 273(2), 245–256.
Wang, T., Zhang, Y., Ge, H., Tang, M., Zhou, L., Lü, Z. and Li, X., 2015. Hydrodesulfurization of Thiophene Over Mo/AC Catalyst Presulfided By Ammonium Thiosulfate. Journal of Fuel Chemistry and Technology 43(2), 202–207.
Xu, Y.-R., Shen, B.-X., Xu, X.-L., Zhang, X.-F. and Zhao, J.-G., 2011. A Study on Selective Catalytic Oxidation Desulfurization of Thiophene in Imitation Gasoline with Ti-MCM-41/H2O2·HCOOH. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34(3), 253–260.
Yaseen, M., Shakirullah, M., Ahmad, I., Rahman, A.U., Rahman, F.U., Usman, M. and Razzaq, R., 2012. Simultaneous Operation Of Dibenzothiophene Hydrodesulfurization and Methanol Reforming Reactions Over Pd Promoted Alumina Based Catalysts. Journal of Fuel Chemistry and Technology 40(406), 714–720.
Yu, S.Y., Li, W. and Iglesia, E., 1999. Desulfurization of Thiophene via Hydrogen Transfer from Alkanes on Cation-Modified H-ZSM5. Journal of Catalysis 187, 257–261.
Refbacks
- There are currently no refbacks.