Optimalisasi Sifat Reologi Hidrogel Kitosan-Hialuronat yang Ditaut-Silang dengan Glutaraldehida

Pajri Samsi Nasution, Muhamad Alif Hamimdal, Gustini Syahbirin, Budi Arifin


Kitosan membentuk hidrogel polikationik dengan penambahan glutaraldehida sebagai penaut-silang. Penambahan hialuronat yang bersifat polianionik diharapkan akan meningkatkan sifat reologis hidrogel tersebut. Penelitian ini mengevaluasi pengaruh konsentrasi glutaraldehida dan hialuronat pada kekuatan gel, titik pecah, dan ketegaran, serta sifat pembengkakan dan pengerutan hidrogel kitosan, dan menentukan konsentrasi optimum keduanya melalui analisis data dengan perangkat lunak Modde 5Ò. Hialuronat meningkatkan kekuatan gel, titik pecah, dan ketegaran hidrogel kitosan pada konsentrasi glutaraldehida yang rendah, tetapi berpengaruh sebaliknya pada konsentrasi glutaraldehida yang tinggi. Sejalan dengan itu, pembengkakan juga menjadi relatif tinggi, sedangkan pengerutan menjadi relatif rendah setelah penambahan hialuronat, tetapi hanya pada konsentrasi glutaraldehida yang rendah. Berdasarkan hasil ini, hialuronat diperkirakan mengisi ruang kosong di antara taut-silang imina yang terbentuk antara glutaraldehida dan kitosan. Pada konsentrasi glutaraldehida yang tinggi, taut-silang ini tidak menyisakan lagi ruang kosong bagi hialuronat. Sebaliknya, air sedikit demi sedikit akan terdesak keluar dari dalam hidrogel dan memicu pengerutan. Komposisi optimum diperoleh pada konsentrasi kitosan 2,0% (b/v), hialuronat 0,3% (v/v) dan glutaraldehida 1,4% (v/v), yang memberikan kekuatan gel, titik pecah, ketegaran, pembengkakan dan pengerutan berturut-turut sebesar 678,4 g cm-2; 1,294 cm; 5,033 g cm-1; 2,634 g dan 0,148 g. Pengukuran sifat reologi hidrogel yang dibuat dengan komposisi optimum tersebut memberikan hasil yang lebih rendah (190,7 g cm-2; 0,767 cm; 1,675 g cm-1) untuk tiga sifat reologi pertama, tetapi lebih tinggi (2,844 g and 0,348 g) untuk dua sifat berikutnya.

Optimization of Rheological Property of Chitosan-Hyaluronate Hydrogel Crosslinked by Glutaraldehyde. Chitosan forms a polycationic hydrogel by addition of glutaraldehyde as a crosslinker. The addition of hyaluronate which is polyanionic is expected to improve the rheological properties of the hydrogel. This study evaluated the effects of glutaraldehyde and hyaluronate concentration on the gel strength, breakpoint, and rigidity of the chitosan hydrogel as well as the swelling and shrinking properties. This study determined the optimum concentration of both of glutaraldehyde and hyaluronate by data analysis using Modde 5Ò software. Hyaluronate increased the gel strength, breakpoint, and rigidity at a low glutaraldehyde concentration, but showed the opposite effects at high glutaraldehyde concentration. At a low concentration of glutaraldehyde, relatively high swelling and low shrinking were revealed after hyaluronate addition. From these results, it was suggested that hyaluronate filled the empty spaces between the imine-crosslinks created by glutaraldehyde and chitosan. At high concentration of glutaraldehyde, the crosslinks became so extensive that no more space was left for hyaluronates. Otherwise, water would be squeezed out from the hydrogel and syneresis would happen. The optimum composition was obtained at 2.0% (w/v) chitosan, 0.3% (v/v) hyaluronate and 1.4% (v/v) glutaraldehyde, which achieved the gel strength, breakpoint, rigidity, swelling and shrinking of 678.4 g cm-2, 1.294 cm, 5.033 g cm-1, 2.634 g and 0.148 g, respectively. However, rheological property measurement of hydrogel synthesized by using the optimum composition gave lower results (190.7 g cm-2, 0.767 cm, 1.675 g cm-1) for the first three properties, but higher results (2.844 g and 0.348 g) for the latter two.


breakpoint; chitosan; crosslink; gel strength; swelling

Full Text:



Ahmadi, F., Oveisi, Z., Samani, S.M., and Amoozgar, Z., 2015. Chitosan Based Hydrogels: Characteristics and Pharmaceutical Applications. Research in Pharmaceutical Sciences 10(1), 1–16.

Argin-Soysal, S., Kofinas, P., and Martin, L., 2009. Effect of Complexation Conditions on Xanthan-Chitosan Polyelectrolyte Complex Gels. Food Hydrocolloids 23(1), 202–209.

BeMiller, J.N., and Huber, K.C., 2008. Carbohydrates. In: Damodaran, S., editor. Fennema’s Food Chemistry, fourth ed. CRC Press, Boca Raton, 113.

Beppu, M.M., Vieira, R.S., Aimoli, C.G., and Santana, C.C., 2007. Crosslinking of Chitosan Membranes using Glutaraldehyde: Effect on Ion Permeability and Water Absorption. Journal of Membrane Science 301(1–2), 126–130.

Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., and Gurny, R., 2004. Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics 57(1), 19–34.

Bourne, M., 2002. Food Texture and Viscosity: Concept and Measurement, second ed. Academic Press, San Diego, 198–199.

Buriuli, M., and Verma, D., 2017. Polyelectrolyte Complexes (PECs) for Biomedical Applications. In: Tripathi, A., Melo, J.S. , editor. Advances in Biomaterials for Biomedical Applications. Advanced Structure Materials Series Volume 66. Springer Singapore, Singapura, 48.

Cleland, R.L., 1983. Viscometric Study of The Proteoglycan-Hyaluronate (2:1) “Dimer”: Minimum Hyaluronate Chain Length. Biopolymers 22(12), 2501–2506.

Coimbra, P., Alves, P., Valente, T.A.M., Santos, R., Correia, I.J., and Ferreira, P., 2011. Sodium Hyaluronate/Chitosan Polyelectrolyte Complex Scaffolds for Dental Pulp Regeneration: Synthesis and Characterization. International Journal of Biological Macromolecules 49(4), 573–579.

Duarte, A.R.C., Mano, J.F., and Reis, R.L., 2009. Preparation of Chitosan Scaffolds Loaded with Dexamethasone for Tissue Engineering Applications Using Supercritical Fluid Technology. European Polymer Journal 45(1), 141–148.

Holmes, C.A., and Tabrizian, M., 2013. Substrate-Mediated Gene Delivery from Glycol-Chitosan/Hyaluronic Acid Polyelectrolyte Multilayer Films. Applied Material Interfaces 5(3), 524–531.

Kaderli, S., Boulocher, C., Pillet, E., Watrelot-Virieux, D., Rougemont, A.L., Roger, T., Viguier, E., Gurny, R., Scapozza, L., and Jordan, O., 2015. A Novel Biocompatible Hyaluronic Acid-Chitosan Hybrid Hydrogel for Osteoarthrosis Therapy. International Journal of Pharmaceutics 483(1–2), 158–168.

Khan, T.A., Peh, K.K., and Ching, H.S., 2002. Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. Journal of Pharmacy and Pharmaceutical Sciences 5(3), 205–212.

Kim, S.J., Yoon, S.G., Lee, K.B., Park, Y.D., and Kim, S.I., 2003. Electrical Sensitive Behavior of A Polyelectrolyte Complex Composed of Chitosan/Hyaluronic Acid. Solid State Ionics 164(3–4), 199–204.

Kuo, J.W., 2006. Practical Aspects of Hyaluronan Based Medical Products. CRC Press, Boca Raton.

Lindblad, M.S., 2003. Strategies for Building Polymers from Renewable Source: Using Prepolymers from Steam Treatment of Wood and Monomers from Fermentation of Agricultural Products, thesis. KTH Fibre and Polymer Technology, Royal Institute of Technology, Stockholm.

Mak, A., and Sun, S., 2008. Intelligent Chitosan-Based Hydrogels as Multifunctional Materials. In: Shahinpoor, M., Schnieder, H.J., editor. Intelligent Materials. Royal Society of Chemistry, Cambridge, 47-461.

Manna, U., Bharani, S., and Patil, S., 2009. Layer-by-Layer Self-Assembly of Modified Hyaluronic Acid/Chitosan Based on Hydrogen Bonding. Biomacromolecules 10(9), 2632–2639.

Monteiro Jr, O.A.C., and Airoldi, C., 1999. Some Studies of Crosslinking Chitosan-Glutaraldehyde Interaction in A Homogenous System. International Journal of Biological Macromolecules 26(2–3), 119–128.

Montembault, A., Viton, C., and Domard, A., 2005. Physico-chemical Studies of The Gelation of Chitosan in a Hydroalcoholic Medium. Biomaterials 26(8), 933–943.

Mráček, A., Varhaniková, J., Lehocký, M., Gřundĕlová, L., Pokopcová, A., and Velebný, V., 2008. The Influence of Hofmeister Series Ions on Hyaluronan Swelling and Viscosity. Molecules 13(5), 1025–1034.

Nishinari, K., and Takahashi, K., 2003. Interaction in Polysaccharide Solutions and Gels. Current Opinion in Colloid and Interface Science 8(4–5), 396–400.

Shang, J., Shao, Z., and Chen, X. 2008a. Electrical Behavior of A Natural Polyelectrolyte Hydrogel: Chitosan/carboxy-methylcellulose Hydrogel. Biomacromolecules 9(4), 1208–1213.

Shang, J., Shao, Z., and Chen, X. 2008b. Chitosan-Based Electroactive Hydrogel. Polymer 49(25), 5520–5525.

Sugita, P., Sjachriza, A., and Lestari, S.I. 2006. Sintesis dan Optimalisasi Gel Kitosan-Gom Guar. Jurnal Natur Indonesia 9, 32–36.

Sugita, P., Sjachriza, A., and Wahyono, D. 2007a. Sintesis dan Optimalisasi Gel Kitosan-Alginat. Jurnal Sains dan Teknologi Indonesia 9(1), 22–26.

Sugita, P., Sjachriza, A., and Rachmanita, 2007b. Sintesis dan Optimalisasi Gel Kitosan-Karboksimetil Selulosa. ALCHEMY: Jurnal Penelitian Kimia 6(1), 57–62.

Sugita, P., Sjachriza, A., and Utomo, D.W. 2007c. Optimization synthesis chitosan-xanthan gum gel for metal adsorption. In: Prosiding 1st International Conference on Chemical Sciences. MAT/33-4. 25–26 Mei 2007, Yogyakarta.

Tahtat, D., Mahlous, M., Benamer, S., Khodja, A.N., Oussedik-Oumehdi, H., and Laraba-Djebari, F., 2013. Oral Delivery of Insulin from Alginate/Chitosan Crosslinked by Glutaraldehyde. International Journal of Biological Macromolecules 58, 160–168.

Tarbojevich, M., and Cosani, A., 1997. Molecular Weight Determination of Chitin and Chitosan. In: Muzarelli, R.A.A., Peter, M.G., editor. Chitin Handbook. European Chitin Society, Grotammare, 85–108.

Tomihata, K., and Ikada, Y., 1997. Crosslinking of Hyaluronate with Glutaraldehyde. Journal of Polymer Science 35(16), 3553–3559.

Wang, T., Turhan, M., and Gunasekaram, S., 2004. Selected Properties of pH-Sensitive, Biodegradable Chitosan-Poly(vinyl alcohol) Hydrogel. Polymer International 53 (7), 911–918.


  • There are currently no refbacks.