Aktivitas Antibakteri TiO2-Anatas Terdadah -Vanadium dan -Kromium

Hari Sutrisno, Ariswan Ariswan, Dyah Purwaningsih

Abstract

Samples of vanadium- and -chromium doped TiO2-anatas have been conducted antibacterial activity against the bacteria Escherichia coli (E. Coli). The minimum kill concentration (MBC) against the bacteria of E. Coli is determined  by liquid dilution method. The antibacterial activity test of 0; 2.3; 3.3; 4.9% wt. vanadium doped TiO2-anatas and 0; 1.1; 3.9; 4.4% wt. chromium doped TiO2-anatas have been performed against bacteria of E. Coli in the absence of light (dark). The test results indicate that the presence of 3.3 and 4.9 in %wt. vanadium-TiO2-anatas are able to inhibit the growth of bacteria E. Coli, contrary all chromium doped TiO2-anatas are not able to inhibit the growth of bacteria of E. Coli.

Full Text:

PDF

References

Al-Hartomy, O.A., 2014, Synthesis, Characterization, Photocatalytic and Photo-Voltaic Performance of Ag-Doped TiO2 Load on the Pt-Carbon Spheres, Mater. Sci. Semicond. Process. vol. 27, pp. 71-78.

Ashkarran, A.A. and Mohammadizadeh, M.R., 2008, Superhydrophilicity of TiO2 Thin Films Using TiCl4 as a Precursor, Materials Research Bulletin. vol. 43, pp. 522-530.

Ashkarran, A.A., 2011, Antibacterial Properties of Silver-Doped TiO2 Nanoparticles under Solar Simulated Light. Journal of Theoretical and Applied Physics. vol.4-4, pp. 1-8.

Awati, P.S., Awate, S.V., Shah, P.P. and Ramaswamy, V., 2003, Photocatalytic Decomposition of Methylene Blue Using Nanocrystalline Anatase Titania Prepared by Ultrasonic Technique, Catalysis Communications. vol. 4, pp. 393-400.

Chang, S.M., and Liu, W.S., 2014, The Roles of Surface-Doped Metal Ions (V, Mn, Fe, Cu, Ce, and W) in the Interfacial Behavior of TiO2 Photocatalysts. Appl. Catal. B: Environ. vol.156-157, pp. 466-475.

Dai, Q., Zhang, Z., He, N., Li, P. and Yuan, C., 1999, Preparation and Characterization of Mesostructured Titanium Dioxide and Its Application as a Photocatalyst for the Wastewater Treatment. Materials Science and Enginering. vol. C8-9, pp. 417-423.

Dědková, K., Matějová, L., Matějová, K., Peikertová, P., Mamulová Kutláková, K., And Kukutschová, J., 2013, Study of the Antibacterial Activity of Cerium Doped TiO2 Photocatalysts. Nanocon. vol.10, pp. 16-18.

Dong, F., Zhao, W., and Wu, Z., 2008, Characterization and Photocatalytic Activities of C, N and S co-Doped TiO2 with 1D Nano-Structure Prepared by the Nano-confinement Effect, Nanotechnol. vol. 19, pp. 365607-365617.

Grätzel, M., 2004, Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cells, Journal of Photochemistry and Photobiology A: Chemistry. vol.164, pp. 3-14.

Grätzel, M., 2005, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, vol. 44, pp. 6841-6851.

Gupta, K., Singh, R.P., Pandey, A. and Pandey, A., 2013, Photocatalytic Antibacterial Performance of TiO2 and Ag-doped TiO2 Against S. aureus. P. aeruginosa and E. coli, Beilstein J. Nanotechnol. vol. 4, pp. 345–351.

Haghi, M., Hekmatafshar, M., Janipour, M.B., Gholizadeh S.S., Faraz, M.K., Sayyadifar, F., and Ghaedi, M., 2012, Antibacterial Effect of TiO2 Nanoparticles On Pathogenic Strain of E. coli. International Journal of Advanced Biotechnology and Research, vol. 3, no. 3, pp. 621-624.

Harikishore, M., Sandhyarani, M., Venkateswarlu, K., Nellaippan, T.A., and Rameshbabu, N., 2014, Effect of Ag Doping on Antibacterial and Photocatalytic Activity of Nanocrystalline TiO2, Procedia Materials Science, vol. 6, pp. 557-566.

Huang, Z., Maness, P.C., Blake, D.M., Wolfrum, E.J., Smolinski, S. and Jacoby, W.A. 2000, Bactericidal Mode of Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, vol. 130, pp. 163-170.

Liu, B., Wang, X., Cai, G., Wen, L., Song, Y., and Zhao, X., 2009, Low Temperature Fabrication of V-Doped TiO2 Nanoparticles, Structure and Photocatalytic Studies. J. Hazard. Mater, vol. 169, pp. 1112-1118.

Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. and Jacoby, W.A., 1999, Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward and Undersding of Its Killing Mechanism, Applied and Environmental. Microbiology. vol. 65, no. 9, pp. 4094-4098.

Masuda, Y. and Kato, K., 2008, Liquid-Phase Patterning and Microstructure of Anatase TiO2 Films on SnO2:F Substrates Using Superhydrophilic Surface. Chemistry of Material, vol. 20, no. 1057-1063.

Roisnel,T. and Ridriguez-Carvajal, J., 2001, WinPLOTR a Graphic Tool for Powder Diffraction. Rennes : CNRS-Lab. de Chimie du Solide et Inorganique Moléculaire Université de Rennes.

Sikong, L., Kongreong, B., Kantachote, D., and Sutthisripok, W., 2010, Photocatalytic Activity and Antibacterial Behavior of Fe3+-Doped TiO2/SnO2 Nanoparticles. Energy Research Journal. vol. 1, no. 2, pp. 120-125.

Stoyanova, A.M., Hitkova, H.Y., Ivanova, N.K., Bachvarova-Nedelcheva, A.D., Iordanova, R.S., and Sredkov, M.P., 2013. Photocatalytic and Antibacterial Activity of Fe-doped TiO2 Nanoparticles Prepared by Nonhydrolytic Sol-Gel Method. Bulgarian Chemical Communications. vol. 45, no. 4, pp. 497-504.

Sun, J., Qiao, L., Sun, S., and Wang, G., 2008, Photocatalytic Degradation of Orange G on N-Doped TiO2 Catalysts Under Visible Light and Sunlight Irradiation. Journal of Hazardous Materials, vol. 155, pp. 312-319.

Sunada, K.; Watanabe, T.; Hashimoto, K., 2003, Studies on Photokilling of Bacteria on TiO2 Thin Film. J. Photochem. Photobiol. Chem., vol. 156, pp. 227–233.

Tan, B. and Wu, Y. (2006). Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites. Journal of Physical Chemistry B. vol.110, pp. 15932-15938.

Thuy, N.M., Van, D.Q., and Hai, L.T.H., 2012, The Visible Light Activity of the TiO2 and TiO2:V4+ Photocatalyst. Nanomater. Nanotechnol, vol. 2, pp. 1-8.

Tian, B., Li, C., and Zhang, J., 2012, One Step Preparation, Characterization and Visible-Light Photo-Catalytic Activity of Cr-doped TiO2 with Anatase and Rutile Bicrystalline Phases, Chem. Eng. J., vol. 191, pp. 402-409.

Verdier, T., Coutand, M., Bertron, A., and Roques, C., 2014, Antibacterial Activity of TiO2 Photocatalyst Alone or in Coatings on E. Coli: the Influence of Methodological Aspects, Coatings, Vol. 4, pp. 670-686.

Yang, J., Cui, S., Qiao, J. Q., Lian, H. Z., 2014. The Photocatalytic Dehalogenation of Chlorophenols and Bromophenols by Cobalt Doped Nano TiO2, J. Mol. Catal. A. Chem., vol. 395, pp. 42-51.

Yang, X., Cao, C., Hohn, K., Erickson, L., Maghirang, R., Hamal, D., and Klabunde, K., 2007, Highly Visible Light Active C- and V-Doped TiO2 for Degradation of Acetaldehyde, J. Catal., vol. 252, pp. 296-302.

Zhang, D.R., Liu, H.N., Han, S.Y., and Piao, W.X., 2013, Synthesis of Sc- and V-Doped TiO2 Nano-Particles and Photodegradation of Rhodamine-B. J. Industrial Eng. Chem. Vol. 19, pp.1838-1844.

Zhao, K., Wu, Z., Tang, R., and Jiang, Y., 2013, Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids. J. Korean Chem. Soc., vol. 57, no. 4, pp. 489-492.

Zhao, Y., Qiu, X., and Burda, C., 2008, The Effects of Sintering on the Photocatalytic Activity of N-doped TiO2 Nanoparticles. Chem. Mater, vol. 20, pp. 2629-2636.