Metode Spektrofotometri Secara Tidak Langsung untuk Penentuan Merkuri(II) berdasarkan Pembentukan Kompleks Biru Iodium-Amilum

Hermin Sulistyarti, Erwin Sulistyo, Sutrisno Sutrisno, Zuri Rismiarti

Abstract

Metode spektrofotometri secara tidak langsung telah dikembangkan untuk analisis merkuri(II) berdasarkan perbedaan absorbansi kompleks biru amilum-iodium antara larutan sampel yang mengandung ion merkuri(II) dan larutan blanko yang tidak mengandung ion merkuri(II) dalam sistem pereaksi yang berisi iodida, iodat dan amilum. Pada larutan blanko, semua ion iodida (I-) dalam sistem pereaksi dioksidasi oleh iodat menjadi iodium yang dengan adanya amilum membentuk kompleks biru iodium-amilum dan terdeteksi secara spektrofotometri pada 618 nm. Namun, bila sampel mengandung ion merkuri(II), maka sebagian ion iodida akan terikat oleh ion merkuri(II) dan membentuk kompleks tetraiodomerkurat(II), sehingga hanya sisa iodida yang dioksidasi oleh ion iodat menjadi iodium dan membentuk warna biru dengan absorbansi yang lebih rendah dibandingkan absorbansi larutan blanko. Hasil penelitian menunjukkan bahwa perbedaan absorbansi sebanding dengan konsentrasi iodida yang terikat pada ion merkuri(II) sehingga sebanding pula dengan konsentrasi merkuri(II) dalam sampel. Metode yang dikembangkan dioptimasi terhadap beberapa parameter kimia, antara lain konsentrasi larutan iodida, iodat, amilum, dan pH larutan dan pada kondisi optimum memberikan kisaran linier 1 – 9 mg L-1 ion merkuri(II) dengan R2 0,9983, dengan LOD 0,44 mgL-1. Metode ini cukup selektif terhadap ion kobalt(II) dan timbal(II), namun ion tembaga(II) dan perak(I) mengganggu pengukuran. Metode ini telah divalidasi menggunakan metode adisi standar yang diaplikasikan ke dalam sampel limbah pertambangan emas dari Lombok dengan hasil yang memuaskan.

Indirect Spectrophotometry for Mercury(II) Determination Based on The Formation of Blue Starch-Iodine Complex. Indirect spectrophotometric method for determining mercury(II) concentration has been successfully developed based on the difference of the absorbance of the blue starch-iodine complex in the absence and in the presence of mercury(II). In the absence of mercury(II), all iodide ions (I-) in the reagent system are oxidized by iodate to iodine, which in the presence of starch formed a clear blue complex of starch-iodine detected spectrophotometrically at 618 nm. However, if mercury presents in the sample, some of the iodide ions are bound to mercury(II) ion forming tetraiodomercurate(II) complex, and thus, only the remaining of iodide is oxidized by iodate to iodine resulting in lower absorbance of the blue color. The results showed that the delta absorbance was proportional to the concentration of iodide bound to mercury and thus proportional to mercury(II) concentration. To achieve the sensitivity, the method was optimized to the main chemical parameters, such as the concentration of iodide, iodine, iodate, starch, and pH solution. Selectivity of the method was also studied by investigating the effect of interfering ions of copper(II), cobalt (II), lead(II), and silver (I). Under these optimum conditions, the method showed linearity measurements from 1 – 9 mg L-1 mercury(II) with correlation (R2) of 0.996. The method was also successfully applied to determine mercury(II) from small-scale gold mining tailing waste from West Lombok, Indonesia and is prospective for analysis of mercury(II) in mining waste.

Keywords

iodate; iodide; mercury(II); spectrophotometry; starch-iodine

Full Text:

PDF

References

Burgot, J.L., 2012. Ionic Equilibria in Analytical Chemistry, Springer Science, London, 442.

Hageman, P.L., 2007. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS), US Geological Survey, Reston, Virginia, Book V, Chapter 2 D.

Hamza, A., Bashammakh, A.S., Al-Sibaaia, A.A., Al-Saidi, H.M., El-Shahawi, M.S., 2010. Part 1. Spectrophotometric Determination of Trace Mercury (II) In Dental-Unit Wastewater and Fertilizer Samples Using The Novel Reagent 6-Hydroxy-3-(2-Oxoindolin-3-Ylideneamino)-2-Thioxo-2H-1,3-Thiazin-4(3H)-One And The Dual-Wavelength Β-Correction Spectrophotometry, Journal of Hazardous Materials. 1789(1-3) 287-292.

Harmita., 2004. Petunjuk Pelaksanaan Validasi Metode dan Cara Perhitungannya, Majalah Ilmu Kefarmasian. Vol 1. No 3.

Jeffrey, G.H., Basset, J., 1998. Mendham J., Denney, R.C., Vogel’s Textbook of Quantitatif Chemical Analysis, 6th ed., Longman Scientific & Techncal, England.

Kaiho, T., 2014. Iodine Chemistry and Application, John Willey & Sons, New Jersey, 376.

Leal, L.O., Elsholz, O., Forteza, R., Cerda, V., 2006. Determination of Mercury by Multisyringe Flow Injection System with Cold-Vapor Atomic Absorption Spectrometry, Analytic Chemistry, Vol. 573-574, 399-405.

Loo, A.Y.W., Lay, Y.P., Kutty, M.G., Timpe. O., Behrens, M., Hamid, S.B.A., 2012. Spectrophotometric Determination of Mercury with Iodide and Rhodamine B, Sains Malaysia, 41(2). 213-218.

Muralidhara, B.. 1998. Indirect Complexometric Determination of Mercury Using Potassium Iodide as Selective Masking Agent, Turky Journal Chemistry. 22. 215-219.

Reddy, G.C., 2011. Derivative Spectrophotometric Determination of Mercury (II) Using Diacetyl Monoxime Isonicotinoyl Hydrazone (DMIH), International Journal of Chemistry, 3(2). 227.

Renneberg, A.J., Dudas, M.J., 2001. Transformations of Elemental Mercury To Inorganic And Organic Forms In Mercury And Hydrocarbon Co-Contaminated Soils, Chemosphere, 45, 1103-1109.

Grenberg, A.E., Clesceri, L.S., Eaton, A.D., Standard Method for the Examination of Water and Wastewater, American Public Health Association (APHA)., 1992. 17th ed., Washington, D.C.

Sulistyarti, H., Atikah, S., Fardiyah, Q., Febriyanti, S., Asdauna. A., 2015. Simple and Safe Spectrophotometric Method for Iodide Determination, Makara Journal of Science, 19(2), 43-48.

Svehla, G., 1979. Vogel’s Textbook of Macro and Semimicro Qualitative Inorganic Analysis 5th ed., Longman Group., London.

US-EPA., 1997. Mercury Study Report to Congress, Volume III, Fate and Transport of Mercury in the Environment.

Veerana, V., Prasad, A.R.G., Rao, V.S., 2011. A Novel Spectrophotometric Method For The Micro Determination Of Mercury (II), Analele Universităţii din Bucuresti –Chimie, 20(1). 57-64.

WHO, 2003. Concise International Chemical Assessment Document 50 Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects, Geneva.

Refbacks

  • There are currently no refbacks.