Evaluasi Pemisahan Alkilbenzena Menggunakan Kolom Monolith Berbasis Polimer Organik secara Kromatografi Cair Kinerja Tinggi

Septi Fajar Raeni, Unsania Haresmawati, Ani Mulyasuryani, Akhmad Sabarudin


Kolom monolith berbasis polimer organik poli-(lauril metakrilat-co-etilen dimetakrilat) disintesis secara in situ kopolimerisasi dalam kolom silicosteel dengan ukuran panjang 10 cm dan diameter dalam 1,02 mm. Kolom monolith ini digunakan untuk pemisahan alkilbenzena secara Kromatografi Cair Kinerja Tinggi (KCKT) fasa terbalik. Pada penelitian ini, efisiensi pemisahan ditingkatkan dengan menggunakan kolom monolith poli-(LMA-co-EDMA) untuk memisahkan senyawa alkilbenzena melalui tiga parameter, yakni temperatur kolom, pemisahan secara isokratik dan pemisahan secara gradien. Temperatur kolom yang digunakan berkisar antara 27–50 °C. Hasil yang diperoleh menunjukkan bahwa temperatur optimum untuk pemisahan alkilbenzena secara isokratik yaitu 27 °C yang setara dengan temperatur ruang dengan fasa gerak asetonitril-air (50:50 w/w). Pemisahan alkilbenzena yang lebih efisien ditunjukkan dari penggunaan mode gradien ditandai dengan nilai peak capacity, faktor retensi dan jumlah plat teoritis yang lebih baik. Fasa gerak yang digunakan pada pemisahan secara gradien yaitu pelarut A yang terdiri atas asetonitril-air (40:60 w/w) dan pelarut B yang terdiri atas asetonitril-air (60:40 w/w)  dengan waktu gradien 20–40 menit 0–100% B. Perubahan waktu gradien berpengaruh terhadap faktor retensi dan peak capacity.

Evaluation of Organic Polymer-Based Monolithic Column by High Performance Liquid Chromatography for The Separation of Alkyl Benzenes. Organic polymer-based monolithic column of poly(lauryl methacrylate-co-ethylene dimethacrylate) has been prepared by in- situ copolymerization inside of silicosteel column with the size of 100 mm long x 1.02 mm i.d. This kind of monolith column used for separation of alkylbenzenes using reversed-phase high performance liquid chromatography (HPLC). The efficiency separation on this research is improved by using poly-(LMA-co-EDMA) monolithic column for separation of alkyl benzene compounds using three strategies involving optimization column temperature, isocratic elution mode, and gradient elution mode. The applied column temperatures were varied in the range of 27–50 °C. It was found that room temperature in isocratic mode with the mobile phase of acetonitrile-water (50:50 w/w) showed the excellent efficiency indicated by baseline-resolved of each peak of alkyl benzenes. The resulted separation efficiency by employing gradient elution mode exceeded its counterpart (isocratic mode), which is indicated by better in peak capacity, retention factor, and number theoritical plate. Two different mobile phases for gradient elution mode, composed of A that contain of acetonitrile-water (40/60 w/w) and B that contain of acetonitrile-water (60/40 w/w) were utilized in the range of 20-40 min for 0-100% B. It was found that increasing gradient time strongly affect to the retention factor and peak capacity.


alkilbenzena; efisiensi; gradien; KCKT; monolith.

Full Text:



Dolan, J.W., 2002. Temperature selectivity in reversed-phase high performance liquid chromatography. Journal of Chromatography A 965, 195–205.

Giddings, J.C., 1965. Dynamics of Chromatography Part I. Principles and Theory. Marcel Dekker. New York. 283.

Gritti, F., and Guiochon, G., 2013. The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography. Journal of Chromatography A 1302, 1–13.

Hao, Z., Xiao, B., and Weng, N., 2008. Impact of column suhu and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC) . Journal of Separation Science 31, 1449–64.

Krenkova, J., Gargano, A., Lacher, A., Schneiderheinze, J.M., and Svec, F., 2009. High binding capacity surface grafted monolithic column or cation exchange chromatography of proteins and peptides. Journal of Chromatography A, 1216, 6824-6830.

Mangelings, D., and Heyden, Y.V., 2010. Application of monolithic chromatography in pharmaceutical analysis, in: Wang, P.W. (Ed.), Monolithic Chromatography and Its Modern Applications. ILM Publication. USA. pp. 177–202.

Moyna, A., 2012. The fabrication and modification of capillary polymer monoliths for the separation of small ions. Dublin City University.

Nema, T., Chan, E.C.Y. and Ho, P.C., 2014. Applications of monolithic for sample preparation. Journal of Pharmaceutical and Biomedical Analysis 87, 130-141.

Ramis-Ramos, G., and eGarcia-Alvarez-Coque, M.C., 2013. Solvent Selection in Liquid Chromatography, in: Fanali, S., Haddad, P.R., Poole, C., Schoenmakers, P.J., et al. (Eds.). Liquid Chromathography : Fundamentals and Instrumentation. Elsevier, Amsterdam. Boston. pp. 225–245.

Sabarudin, A., Huang, J., Shu, S., Sakagawa, S., and Umemura, T., 2012. Preparation of methacrylate-based anion-exchange monolithic microbore column for chromatographic separation of DNA fragments and oligonucleotides. Analytica Chimica Acta 736, 108-114.

Shrivastava, A., and Gupta, V.B., 2012. HPLC: Isocratic or Gradient Elution and Assessment of Linearity In Analytical Methods. Journal of Advanced Scientific Research 3.

Shu, S., Kobayashi, H., Kojima, N., Sabarudin, A., and Umemura, T., 2011. Preparation and characterization of lauryl methacrylate-based monolithic microbore column for reversed-phase liquid chromatography. Journal of Chromatography A 1218, 5228–5234.

Shu, S., Kobayashi, H., Okubo, M., Sabarudin, A., Butsugan, M., and Umemura T., 2012. Chemical anchoring of lauryl methacrylate-based reversed phase monolith to 1/16″ o.d. polyetheretherketone tubing. Journal of Chromatography A 1242, 59–66.

Synder, L.R., and Kirkland, J.J., 1979. Introduction to Modern Liquid Chromatography. 2nd ed. John Wiley & Sons, Inc. New York.

Tasfiyati, A.N., Iftitah, E.D., Sakti, S.P., and Sabarudin, A., 2016. Evaluation of Glycidyl Methacrylate-Based Monolith Functionalized with Weak Anion Exchange Moiety Inside 0.5 Mm I.d. Column for Liquid Chromatographic Separation of Dna. Analytical Chemistry Research 7, 9–16.

Unger, K.K., Lamotte, S., and Machtejevas, E., 2013. Column technology in Liquid Chromatography, in: Fanali, S., Haddad, P.R., Lloyd, D., Poole, C.F., et al. (Eds.), Liquid Chromatography. Fundamentals and Instrumentation/[Edited by] Salvatore Fanali, Paul R. Haddad, Colin F. Poole, Peter Schoenmakers, David Lloyd, Elsevier, Amsterdam, 42–67.


  • There are currently no refbacks.