Antibacterial Activity of Avicennia Mangrove

Yeni Mulyani, Yuniar Mulyani, Aisyah Aisyah

Abstract

The rise of antibiotic resistance presents a major challenge, reducing the efficacy of conventional antibacterial treatments and necessitating the discovery of novel antimicrobial agents. The use of natural products has played a pivotal role in the development of antibiotics. Specifically, marine organisms, with a notable emphasis on mangroves of the genus Avicennia, have played a crucial role in this process. Avicennia marina, Avicennia officinalis, Avicennia alba, and Avicennia germinans have been found to contain secondary metabolites, including flavonoids, tannins, alkaloids, and terpenoids, which exhibit antibacterial properties against drug-resistant pathogens. The review was conducted based on literature published between 2005 and 2025. These compounds act through diverse mechanisms such as disrupting bacterial cell walls, inhibiting protein synthesis, and interfering with quorum sensing and biofilm formation. Evaluations through disk diffusion, microdilution assay, and biofilm inhibition assays have demonstrated the significant antibacterial activity of Avicennia extracts, suggesting their potential as alternative therapeutics in combating resistant bacteria. Future research should focus on enhancing these bioactive compounds’ bioavailability, stability, and large-scale production while addressing potential toxicity and navigating the complex regulatory requirements for drug approval. The continued exploration of Avicennia-derived compounds may contribute to developing novel antibiotics, offering sustainable solutions to antibiotic resistance.

Keywords

antibiotics; bioactive; environmental; drug-resistant; secondary metabolites

Full Text:

PDF

References

Alrubaye, A.A, Balef, R.M, Kalbi, S., and Tanideh, N., 2024. Unveiling the Healing Potential of Avicennia Marina: A Mini Review on Its Medicinal Marvels. West Kazakhstan Medical Journal, 66, 155–162. https://doi.org/10.18502/wkmj.v66i2.16458.

Aderiye, B.I., and Oluwole, O.A., 2015. Disruption of Fungi Cell Membranes by Polyenes, Azoles, Allylamines, Amino Acids and Peptides. International Scientific Research Journal, 1, 108–116. https://doi.org/10.18483/IRJSci.13.

Alhaddad, Z.A., Tanod, W.A., and Wahyudi, D., 2019. Bioaktivitas Antibakteri Dari Ekstrak Daun Mangrove Avicennia Sp. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 12, 12. https://doi.org/10.21107/jk.v12i1.4752.

Al-Mur, B.A., 2021. Biological Activities of Avicennia Marina Roots and Leaves Regarding Their Chemical Constituents. Arabian Journal for Science and Engineering, 46, 5407–5419. https://doi.org/10.1007/s13369-020-05272-1.

Alsaadi, W.A., Bamagoos, A.A., and Hakeem, K.R., 2022. Phytochemical Analysis and Antibacterial Activities of Avicennia Marina (Forssk.) Vierh. Extracts against Vancomycin-Resistant Enterococcus Faecium. Advances in Environmental Biology, 16, 5–12. https://doi.org/10.22587/aeb.2022.16.9.2.

Asaf, S., Khan, A.L., Numan, M., and Al-Harrasi, A., 2021. Mangrove Tree (Avicennia Marina): Insight into Chloroplast Genome Evolutionary Divergence and Its Comparison with Related Species from Family Acanthaceae. Scientific Reports, 11, 3586. https://doi.org/10.1038/s41598-021-83060-z.

Aslam, B., Khurshid, M., Arshad, M.I., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T.H., Rasool, M.H., Shahid, A., Xueshan, X., and Baloch, Z., 2021. Antibiotic Resistance: One Health One World Outlook. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.771510.

Assaw, S., Mohd Amir, M.I.H., Khaw, T.T., Bakar, K., Mohd Radzi, S.A., and Mazlan, N.W., 2020. Antibacterial and Antioxidant Activity of Naphthofuranquinones from the Twigs of Tropical Mangrove Avicennia Officinalis. Natural Product Research, 34, 2403–2406. https://doi.org/10.1080/14786419.2018.1538220.

Basyuni, M., Sasmito, S.D., Analuddin, K., Ulqodry, T.Z., Saragi-Sasmito, M.F., Eddy, S., and Milantara, N., 2022. Mangrove Biodiversity, Conservation and Roles for Livelihoods in Indonesia, in: Mangroves: Biodiversity, Livelihoods and Conservation. Springer Nature Singapore, Singapore, pp. 397–445. https://doi.org/10.1007/978-981-19-0519-3_16.

Beniwal, D., Dhull, S.S., Gulia, V., and Rani, J., 2024. Avicennia: A Mangrove Genus Unveiled through Its Phytochemistry, Pharmacological, and Ecological Importance. Rendiconti Lincei. Scienze Fisiche e Naturali, 35, 907–929. https://doi.org/10.1007/s12210-024-01278-1.

Bindu, A.R., Rosemary, J., and Akhila, S., 2014. Antimicrobial Activity Screening of m. Minuta Extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 6.

Bobbarala, V., Rao Vadlapudi, V., and Chandrasekhar Naidu, K., 2009. Antimicrobial Potentialities of Mangrove Plant Avicennia Marina. Journal of Pharmacy Research, 2.

Bolotsky, A., Muralidharan, R., Zhou, K., Butler, D., Root, K., and Ebrahimi, A., 2020. Reagent-Free Electrochemical Monitoring of Bacterial Viability Using Novel Organic Crystals Deposited on Flexible Substrates. ECS Meeting Abstracts, MA2020-02, 2840–2840. https://doi.org/10.1149/MA2020-02442840mtgabs.

Brandt, T., 2022. Death of a bacterium: exploring the inhibition of Staphylococcus aureus by Burkholderia cenocepacia. University of Louisville. https://doi.org/10.18297/etd/3990.

Butala, S., Suvarna, V., Mallya, R., and Khan, T., 2021. An Insight into Cytotoxic Activity of Flavonoids and Sesquiterpenoids from Selected Plants of Asteraceae Species. Chemical Biology & Drug Design, 98, 1116–1130. https://doi.org/10.1111/cbdd.13970.

Carugati, L., Gatto, B., Rastelli, E., Lo Martire, M., Coral, C., Greco, S., and Danovaro, R., 2018. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Scientific Reports, 8, 13298. https://doi.org/10.1038/s41598-018-31683-0.

Cerri, F., Giustra, M., Anadol, Y., Tomaino, G., Galli, P., Labra, M., Campone, L., and Colombo, M., 2022. Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia Marina. Pharmaceutics, 14, 2793. https://doi.org/10.3390/pharmaceutics14122793.

Cheniti, W., Amraoui, N., Roumili, I., Abdelouhab, K., Charef, N., Baghiani, A., and Arrar, L., 2022. Anti-Inflammatory Effects of Different Parts of Algerian Caper (Capparis Spinosa) on Animal Models. South Asian Journal of Experimental Biology, 12, 661–670. https://doi.org/10.38150/sajeb.12(5).p661-670.

Dahibhate, N.L., Saddhe, A.A. and Kumar, K., 2019. Mangrove plants as a source of bioactive compounds: A review. The Natural Products Journal, 9, 86–97.

Das, S.K., Samantaray, D., Mahapatra, A., Pal, N., Munda, R., and Thatoi, H., 2018. Pharmacological Activities of Leaf and Bark Extracts of a Medicinal Mangrove Plant Avicennia Officinalis L. Clinical Phytoscience, 4, 13. https://doi.org/10.1186/s40816-018-0072-0.

Davin-Regli, A., Pages, J.-M., and Ferrand, A., 2021. Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics, 10, 1117. https://doi.org/10.3390/antibiotics10091117.

Devi, A.S., Rajkumar, J., Joseph, and Jain, S., 2016. Inhibitory Potential of Avicennia Marina against Bacterial Pathogens of Urinary Tract Infection (UTI) from Infected Patients for Health and Sanitation. International Journal of Chemical Sciences, 14.

Djeussi, D.E., Noumedem, J.A., Seukep, J.A., Fankam, A.G., Voukeng, I.K., Tankeo, S.B., Nkuete, A.H., and Kuete, V., 2013. Antibacterial Activities of Selected Edible Plants Extracts against Multidrug-Resistant Gram-Negative Bacteria. BMC Complementary and Alternative Medicine, 13, 164. https://doi.org/10.1186/1472-6882-13-164.

Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M.L., De Tommasi, N., Izzo, V., and Dal Piaz, F., 2021. Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics, 13, 660. https://doi.org/10.3390/pharmaceutics13050660.

ElDohaji, L.M., Hamoda, A.M., Hamdy, R., and Soliman, S.S.M., 2020. Avicennia Marina a Natural Reservoir of Phytopharmaceuticals: Curative Power and Platform of Medicines. Journal of Ethnopharmacology, 263, 113179. https://doi.org/10.1016/j.jep.2020.113179.

Fajri, S., Gunawan, H., Puspitasari, D., Ningrum, H.S., Nizirwan, M.I., Firmansyah, M.A., Hardiansyah, H., Pahmi, P., and Wahyudi, A., 2023. Identifikasi Biota Asosiasi Pada Mangrove Jenis Avicennia Spp. Dan Sonneratia Spp. Di Pantai Laksamana Kabupaten Batu Bara. SINTA Journal (Science, Technology, and Agricultural), 4, 215–220. https://doi.org/10.37638/sinta.4.2.215-220.

France, S.P., Lewis, R.D., and Martinez, C.A., 2023. The Evolving Nature of Biocatalysis in Pharmaceutical Research and Development. JACS Au, 3, 715–735. https://doi.org/10.1021/jacsau.2c00712.

Habib, Md.A., Khatun, F., Ruma, M.K., Chowdhury, A.S.M.H.K., Silve, A.R., Rahman, A., and Hossain, Md.I., 2018. A Review on Phytochemical Constituents of Pharmaceutically Important Mangrove Plants, Their Medicinal Uses and Pharmacological Activities. Vedic Research International Phytomedicine, 6, 1. https://doi.org/10.14259/pm.v6i1.220.

Horváth, Z., Ptacnik, R., Vad, C.F., and Chase, J.M., 2019. Habitat Loss over Six Decades Accelerates Regional and Local Biodiversity Loss via Changing Landscape Connectance. Ecology Letters, 22, 1019–1027. https://doi.org/10.1111/ele.13260.

Hu, Y., Lin, Q., Zhao, H., Li, X., Sang, S., McClements, D.J., Long, J., Jin, Z., Wang, J., and Qiu, C., 2023. Bioaccessibility and Bioavailability of Phytochemicals: Influencing Factors, Improvements, and Evaluations. Food Hydrocolloids, 135, 108165. https://doi.org/10.1016/j.foodhyd.2022.108165.

Hudecová, P., Koščová, J., and Hajdučková, V., 2023. Phytobiotics and Their Antibacterial Activity Against Major Fish Pathogens. A Review. Folia Veterinaria, 67, 51–61. https://doi.org/10.2478/fv-2023-0017.

Idir, F., Van Ginneken, S., Coppola, G.A., Grenier, D., Steenackers, H.P., and Bendali, F., 2022. Origanum Vulgare Ethanolic Extracts as a Promising Source of Compounds with Antimicrobial, Anti-Biofilm, and Anti-Virulence Activity against Dental Plaque Bacteria. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.999839.

Jenner, K.J., Kreutzer, G., and Racine, P., 2011. Persistency Assessment and Aerobic Biodegradation of Selected Cyclic Sesquiterpenes Present in Essential Oils. Environmental Toxicology and Chemistry, 30, 1096–1108. https://doi.org/10.1002/etc.492.

Karimi, A., Krähmer, A., Herwig, N., Schulz, H., Hadian, J., and Meiners, T., 2020. Variation of Secondary Metabolite Profile of Zataria Multiflora Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00969.

Karthi, S., Vinothkumar, M., Karthic, U., Manigandan, V., Saravanan, R., Vasantha-Srinivasan, P., Kamaraj, C., Shivakumar, M.S., De Mandal, S., Velusamy, A., Krutmuang, P., and Senthil-Nathan, S., 2020. Biological Effects of Avicennia Marina (Forssk.) Vierh. Extracts on Physiological, Biochemical, and Antimicrobial Activities against Three Challenging Mosquito Vectors and Microbial Pathogens. Environmental Science and Pollution Research, 27. https://doi.org/10.1007/s11356-020-08055-1.

Kartikaningsih, H., Djamaludin, H., Audina, N., and Fauziyah, J.N., 2024. Antibacterial Activity and Molecular Docking of Compounds from Avicennia marina Leaves Extracts: Obtained by Natural Deep Eutectic Solvents. Indonesian Journal of Chemistry, 24, 1661. https://doi.org/10.22146/ijc.92444.

Kim, K., Seo, E., Chang, S.K., Park, T.J., and Lee, S.J., 2016. Novel Water Filtration of Saline Water in the Outermost Layer of Mangrove Roots. Scientific Reports, 6. https://doi.org/10.1038/srep20426.

Luna, Á., Romero-Vidal, P., Hiraldo, F., and Tella, J.L., 2018. Cities May Save Some Threatened Species but Not Their Ecological Functions. PeerJ, 2018. https://doi.org/10.7717/peerj.4908.

Mahera, S.A., Saifullah, S.M., Ahmad, V.U., and Mohammad, F. V., 2013. Phytochemical Studies on Mangrove Avicennia Marina. Pakistan Journal of Botany, 45, 2093–2094.

Maithani, D., Sharma, A., Gangola, S., Chaudhary, P., and Bhatt, P., 2022. Insights into Applications and Strategies for Discovery of Microbial Bioactive Metabolites. Microbiological Research,. https://doi.org/10.1016/j.micres.2022.127053.

Manilal, A., Tsalla, T., Zerdo, Z., Ameya, G., Merdekios, B., and John, S.E., 2016. Evaluating the Antibacterial and Anticandidal Potency of Mangrove, Avicennia Marina. Asian Pacific Journal of Tropical Disease, 6. https://doi.org/10.1016/S2222-1808(15)60999-9.

Mansur-Azzam, N., Hosseinidoust, Z., Woo, S.G., Vyhnalkova, R., Eisenberg, A., and Van de Ven, T.G.M., 2014. Bacteria Survival Probability in Bactericidal Filter Paper. Colloids and Surfaces B: Biointerfaces, 117. https://doi.org/10.1016/j.colsurfb.2014.03.011.

Marrero, F.E., 2016. Natural Products for Drug Discovery. Toxicology Letters, 259, S15. https://doi.org/10.1016/j.toxlet.2016.07.074.

Md Isa, N.N., and Suratman, M.N., 2021. Structure and Diversity of Plants in Mangrove Ecosystems, in: Mangroves: Ecology, Biodiversity and Management. Springer Singapore, Singapore, pp. 361–369. https://doi.org/10.1007/978-981-16-2494-0_15.

Miclea, I., 2022. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. International Journal of Molecular Sciences, 23, 9877. https://doi.org/10.3390/ijms23179877.

Mitra, S., Islam, F., Das, R., Urmee, H., Akter, A., Idris, A.M., Khandaker, M.U., Almikhlafi, M.A., Sharma, R., and Emran, T. Bin, 2022. Pharmacological Potential of Avicennia Alba Leaf Extract: An Experimental Analysis Focusing on Antidiabetic, Anti‐inflammatory, Analgesic, and Antidiarrheal Activity. BioMed Research International, 2022. https://doi.org/10.1155/2022/7624189.

Mitra, S., Naskar, N., and Chaudhuri, P., 2021. A Review on Potential Bioactive Phytochemicals for Novel Therapeutic Applications with Special Emphasis on Mangrove Species. Phytomedicine Plus, 1, 100107. https://doi.org/10.1016/j.phyplu.2021.100107.

Molaee, M., Ali Sahari, M., Esmaeilzadeh Kenari, R., Amirkaveei, S., and Arbidar, E., 2017. A Study on the Composition and Antioxidant Properties of Avicennia marina Leaf Extract. Current Nutrition & Food Science, 13, 131–136. https://doi.org/10.2174/1573401313666170110110131.

Mondal, M., Halder, G., Oinam, G., Indrama, T., and Tiwari, O.N., 2019. Bioremediation of Organic and Inorganic Pollutants Using Microalgae, in: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp. 223–235. https://doi.org/10.1016/B978-0-444-63504-4.00017-7.

Nizam, A., Meera, S.P., and Kumar, A., 2022. Genetic and Molecular Mechanisms Underlying Mangrove Adaptations to Intertidal Environments. iScience, 25, 103547. https://doi.org/10.1016/j.isci.2021.103547.

Okla, M.K., Alatar, A.A., Al-amri, S.S., Soufan, W.H., Ahmad, A., and Abdel-Maksoud, M.A., 2021. Antibacterial and Antifungal Activity of the Extracts of Different Parts of Avicennia Marina (Forssk.) Vierh. Plants, 10, 252. https://doi.org/10.3390/plants10020252.

Oloyede, H.O.B., Ajiboye, H.O., Salawu, M.O., and Ajiboye, T.O., 2017. Influence of Oxidative Stress on the Antibacterial Activity of Betulin, Betulinic Acid and Ursolic Acid. Microbial Pathogenesis, 111, 338–344. https://doi.org/10.1016/j.micpath.2017.08.012.

Purba, P.Y., Yoswaty, D., and Nursyirwani, N., 2022. Antibacterial Activity of Avicennia Alba Leaves and Stem Extracts Against Pathogenic Bacteria (Pseudomonas Aeruginosa, Aeromonas Salmonicida, Staphylococcus Aureus). Journal of Coastal and Ocean Sciences, 3, 144–151. https://doi.org/10.31258/jocos.3.2.144-151.

Putri, R.H., 2024. Screening Potensi Daun Mangrove (Avicennia marina (Forssk.) Vierh.) sebagai Antibakteri Staphylococcus aureus dan Escherichia coli. Skripsi. Universitas Pakuan, Bogor.

Qin, J., Yu, L., Peng, F., Ye, X., Li, G., Sun, C., Cheng, F., Peng, C., and Xie, X., 2023. Tannin Extracted from Penthorum Chinense Pursh, a Potential Drug with Antimicrobial and Antibiofilm Effects against Methicillin-Sensitive Staphylococcus Aureus and Methicillin-Resistant Staphylococcus Aureus. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1134207.

Rahmania, A., Revalitha, A. A., Mustika, A. B., Torimbanu, A. R., Nugroho, G. D., Md. Naim, D.,and Setyawan, A. D. 2024. Review: Phytochemical composition, biological activity, and health-promoting effects of Avicennia spp. (Avicenniaceae). Asian Journal of Tropical Biotechnology, 21, 96–110. https://doi.org/10.13057/biotek/c210205.

Ramasubburayan, R., Prakash, S., Pitchiah, S., & Dhanraj, G. (2024). Antifouling activity and biodegradable potential of the bioactive metabolites isolated from mangrove Avicennia officinalis L. Natural Product Research, 38(10), 1680–1686. https://doi.org/10.1080/14786419.2023.2217468.

Ramzi, M.M., Rahman, N.I.A., Rawi, N.N., Bhubalan, K., Ariffin, F., Mazlan, N.W., Saidin, J., Danish-Daniel, M., Siong, J.Y.F., Bakar, K., Mohd Zin, N.A., Azemi, A.K., and Ismail, N., 2023. Antifouling Potential of Diadema Setosum and Sonneratia Lanceolata Extracts for Marine Applications. Journal of Marine Science and Engineering, 11, 602. https://doi.org/10.3390/jmse11030602.

Ratha, B.N., Lahiri, D., and Ray, R.R., 2021. Inhibition of Biofilm Formation, in: Biofilm-Mediated Diseases: Causes and Controls. Springer Singapore, Singapore, pp. 209–237. https://doi.org/10.1007/978-981-16-0745-5_9.

Ravikumar, S., Syed Ali, M., Ramu, A., and Ferosekhan, M., 2011. Antibacterial Activity of Chosen Mangrove Plants Against Bacterial Specified Pathogens. World Applied Sciences Journal, 14, 1198–1202.

Renaldi, Rozirwan, and Ulqody, T.Z., 2018. Bioaktivitas Senyawa Bioaktif Pada Mangrove Avicennia Marina Dan Bruguiera Gymnorrhiza Sebagai Antibakteri Yang Diambil Dari Pulau Payung Dan Tanjung Api-Api. Maspari Journal: Marine Science Research, 10, 73–80.

Riseh, S.R., Ebrahimi-Zarandi, M., Tamanadar, E., Pour, M.M., and Thakur, V.K., 2021. Salinity Stress: Toward Sustainable Plant Strategies and Using Plant Growth-Promoting Rhizobacteria Encapsulation for Reducing It. Sustainability, 13, 12758. https://doi.org/10.3390/su132212758.

Roberts, A.E.L., Kragh, K.N., Bjarnsholt, T., and Diggle, S.P., 2015. The Limitations of In Vitro Experimentation in Understanding Biofilms and Chronic Infection. Journal of Molecular Biology, 427, 3646–3661. https://doi.org/10.1016/j.jmb.2015.09.002.

Sadoughi, S.D., and Hosseini, S.M., 2020. Effects of Hydroalcoholic Leaf Extract of Avicennia Marina on Apoptotic, Inflammatory, Oxidative Stress, and Lipid Peroxidation Indices and Liver Histology of Type 1 Diabetic Rats. Hepatitis Monthly, 20. https://doi.org/10.5812/hepatmon.99454.

Sahu, G., Kachhi, G., Thakur, B., Jain, A., Jain, P.K., and Khare, B., 2022. Novel Bioactive Compounds from Marine Sources as a Tool for Drug Development. International Journal of Medical Sciences and Pharma Research, 8, 33–38. https://doi.org/10.22270/ijmspr.v8i3.57.

Salin, O., Alakurtti, S., Pohjala, L., Siiskonen, A., Maass, V., Maass, M., Yli-Kauhaluoma, J., and Vuorela, P., 2010. Inhibitory Effect of the Natural Product Betulin and Its Derivatives against the Intracellular Bacterium Chlamydia Pneumoniae. Biochemical Pharmacology, 80, 1141–1151. https://doi.org/10.1016/j.bcp.2010.06.051.

Sharaf, M., El-Ansari, M.A., and Saleh, N.A.M., 2000. New Flavonoids from Avicennia Marina. Fitoterapia, 71, 274–277. https://doi.org/10.1016/S0367-326X(99)00169-0.

Shin, K.S., Jo, M.Y., and Hong, S.B., 2016. Evaluation of the Antibacterial Effects of Phellinus Baumii Extract on Methicillin-Resistant Staphylococcus Aureus by Using Broth Microdilution Based on a Colorimetric Method. Biomedical Science Letters, 22, 167–173. https://doi.org/10.15616/BSL.2016.22.4.167.

Spencer, T., Möller, I., and Reef, R., 2016. Mangrove Systems and Environments☆, in: Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10262-3.

Spinaci, M., Bucci, D., Muccilli, V., Cardullo, N., Nerozzi, C., and Galeati, G., 2019. A Polyphenol-Rich Extract from an Oenological Oak-Derived Tannin Influences In Vitro Maturation of Porcine Oocytes. Theriogenology, 129, 82–89. https://doi.org/10.1016/j.theriogenology.2019.02.017.

Srinivasan, R., Kannappan, A., Shi, C., and Lin, X., 2021. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Marine Drugs, 19, 530. https://doi.org/10.3390/md19100530.

Steenbergen, D.J., Clifton, J., Visser, L.E., Stacey, N., and McWilliam, A., 2017. Understanding Influences in Policy Landscapes for Sustainable Coastal Livelihoods. Marine Policy, 82, 181–188. https://doi.org/10.1016/j.marpol.2017.04.012.

Suyadi, and Manullang, C.Y., 2020. Distribution of Plastic Debris Pollution and It Is Implications on Mangrove Vegetation. Marine Pollution Bulletin, 160, 111642. https://doi.org/10.1016/j.marpolbul.2020.111642.

Tao, J., Yan, S., Zhou, C., Liu, Q., Zhu, H., and Wen, Z., 2021. Total Flavonoids from Potentilla Kleiniana Wight et Arn Inhibits Biofilm Formation and Virulence Factors Production in Methicillin-Resistant Staphylococcus Aureus (MRSA). Journal of Ethnopharmacology, 279, 114383. https://doi.org/10.1016/j.jep.2021.114383.

Taffouo, V.D., Fonkou, T., Kenne, M., Fotsop, O.W., and Amougou, A., 2006. Effects of Salinity on Growth, Water Content and Distribution of Na+ and K+ in the Organs of Avicennia germinans L. Seedlings. Cameroon Journal of Experimental Biologi, 1, 21–25. https://doi.org/10.4314/cajeb.v1i1.37931.

Těšitel, J., Fibich, P., de Bello, F., and Chytrý, M., 2015. Habitats and Ecological Niches of Root-Hemiparasitic Plants: An Assessment Based on a Large Database of Vegetation Plots. Preslia, 87, 87–108.

Thatoi, H., Samantaray, D., and Das, S.K., 2016. The Genus Avicennia , a Pioneer Group of Dominant Mangrove Plant Species with Potential Medicinal Values: A Review. Frontiers in Life Science, 9, 267–291. https://doi.org/10.1080/21553769.2016.1235619.

Tiwari, S., Nizet, O., and Dillon, N., 2023. Development of a High-Throughput Minimum Inhibitory Concentration (HT-MIC) Testing Workflow. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1079033.

Triest, L., Del Socorro, A., Gado, V.J., Mazo, A.M., and Sierens, T., 2021. Avicennia Genetic Diversity and Fine-Scaled Structure Influenced by Coastal Proximity of Mangrove Fragments. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.643982.

Virtanen, V., Puljula, E., Walton, G., Woodward, M.J., and Karonen, M., 2023. NMR Metabolomics and DNA Sequencing of Escherichia Coli and Staphylococcus Aureus Cultures Treated with Hydrolyzable Tannins. Metabolites, 13, 320. https://doi.org/10.3390/metabo13030320.

Whitfield, A., 2020. Littoral Habitats as Major Nursery Areas for Fish Species in Estuaries: A Reinforcement of the Reduced Predation Paradigm. Marine Ecology Progress Series, 649, 219–234. https://doi.org/10.3354/meps13459.

Yan, D.-M., Gao, C.-H., Yi, X.-X., Xie, W.-P., Xu, M.-B., and Huang, R.-M., 2015. Two New Secondary Metabolites from the Fruits of Mangrove Avicennia Marina. Zeitschrift für Naturforschung B, 70, 691–694. https://doi.org/10.1515/znb-2014-0111.

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., and Li, M., 2021. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics, 10, 318. https://doi.org/10.3390/antibiotics10030318.

Yi, J., Xia, W., Wu, Jianping, Yuan, L., Wu, Jing, Tu, D., Fang, J., and Tan, Z., 2014. Betulinic Acid Prevents Alcohol-Induced Liver Damage by Improving the Antioxidant System in Mice. Journal of Veterinary Science, 15, 141. https://doi.org/10.4142/jvs.2014.15.1.141.

Zheng, D., Ding, N., Jiang, Y., Zhang, J., Ma, J., Chen, X., Liu, J., Han, L., and Huang, X., 2016. Albaflavenoid, a New Tricyclic Sesquiterpenoid from Streptomyces Violascens. The Journal of Antibiotics, 69, 773–775. https://doi.org/10.1038/ja.2016.12.

Zhu, J.-J., and Yan, B., 2022. Blue Carbon Sink Function and Carbon Neutrality Potential of Mangroves. Science of The Total Environment, 822, 153438. https://doi.org/10.1016/j.scitotenv.2022.153438.

Refbacks

  • There are currently no refbacks.