ARTIFICIAL INTELLIGENCE AS INNOVATION IN MATHEMATICS LEARNING IN VOCATIONAL SCHOOLS: A SYSTEMATIC REVIEW
Abstract
Kecerdasan Buatan (AI) telah muncul sebagai inovasi transformatif dalam pendidikan matematika kejuruan, yang menawarkan peluang baru untuk meningkatkan hasil pembelajaran dan mengatasi tantangan yang sudah lama ada. Tinjauan sistematis ini bertujuan untuk mengeksplorasi penerapan AI dalam pendidikan matematika kejuruan, dampaknya terhadap keterlibatan, kinerja, dan kepuasan siswa, serta tantangan yang terkait dengan integrasinya. Dengan menggunakan kerangka kerja PRISMA, studi ini menganalisis artikel yang ditinjau sejawat yang diterbitkan antara tahun 2020 sampai 2025, yang bersumber dari basis data seperti Scopus, Web of Science, SpringerLink, dan ScienceDirect. Temuan tersebut mengungkapkan bahwa perangkat AI, termasuk Intelligent Tutoring Systems (ITS), asisten virtual, dan aplikasi gamifikasi, telah berhasil diterapkan untuk mempersonalisasi pembelajaran dan meningkatkan hasil siswa. Perangkat ini telah menunjukkan dampak positif yang signifikan, seperti peningkatan keterlibatan siswa, peningkatan nilai ujian, dan tingkat kepuasan yang lebih tinggi. Namun, tantangan seperti infrastruktur yang terbatas, kesiapan guru, dan masalah etika terkait privasi data dan bias algoritmik menghambat adopsi yang meluas. Studi ini menyimpulkan bahwa meskipun AI memiliki potensi besar untuk merevolusi pendidikan matematika kejuruan, mengatasi hambatan ini sangat penting untuk implementasi yang adil dan efektif. Penelitian di masa mendatang harus difokuskan pada pengembangan solusi AI yang hemat biaya, perluasan program pelatihan guru, dan eksplorasi dampak jangka panjang AI pada pendidikan kejuruan. Tinjauan ini memberikan wawasan berharga bagi para pendidik, pembuat kebijakan, dan peneliti yang berupaya memanfaatkan AI untuk pembelajaran matematika yang inovatif dan inklusif di sekolah kejuruan.
Keywords
Full Text:
PDFReferences
Abd-Alrazaq, A., AlSaad, R., Alhuwail, D., Ahmed, A., Healy, P. M., Latifi, S.,…Sheikh, J. (2023). Large language models in medical education: opportunities, challenges, and future directions. JMIR Medical Education, 9(1), e48291.
Agbata, B., Obeng-Denteh, W., Abraham, S., Asante-Mensa, F., Kwabi, P., Okpako, S.,…Arivi, S. (2024). Advancing mathematics education in Africa: Challenges, strategies, and prospects. Science World Journal, 19(3), 808-818.
Aithal, P. S., & Maiya, A. K. (2023). Innovations in higher education industry–Shaping the future. International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(4), 283-311.
Brightwood, S., Olusegun, J., & Ray, R. (2024). Ai-based learning analytics: identifying knowledge gaps and learning styles.
Çela, E., Vajjhala, N., & Eappen, D. P. (2024). Artificial Intelligence in Vocational Education and Training. In. https://doi.org/10.4018/979-8-3693-8252-3.ch001
Dabingaya, M. (2022). Analyzing the Effectiveness of AI-Powered Adaptive Learning Platforms in Mathematics Education. Interdisciplinary Journal Papier Human Review, 3, 1-7. https://doi.org/10.47667/ijphr.v3i1.226
du Plooy, E., Casteleijn, D., & Franzsen, D. (2024). Personalized adaptive learning in higher education: A scoping review of key characteristics and impact on academic performance and engagement. Heliyon, 10(21), e39630. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e39630
Ejjami, R. (2024). AI'S Impact on Vocational Training and Employability: Innovation, Challenges, and Perspectives. International Journal For Multidisciplinary Research, 6. https://doi.org/10.36948/ijfmr.2024.v06i04.24967
Firda, N., Suryadi, D., & Nasir, N. (2024). Artificial intelligence’s transformative role in mathematics education: A systematic literature review. https://doi.org/10.1063/5.0235478
Gomes, D. (2024). Intelligent Tutoring System A Comprehensive Study of Advancements in Intelligent Tutoring Systems through Artificial Intelligence Education Platform. In. https://doi.org/10.4018/979-8-3693-6170-2.ch008
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education. Promise and Implications for Teaching and Learning.
Huang, J., Bibri, S. E., & Keel, P. (2025). Generative spatial artificial intelligence for sustainable smart cities: A pioneering large flow model for urban digital twin. Environmental Science and Ecotechnology, 24, 100526. https://doi.org/https://doi.org/10.1016/j.ese.2025.100526
Imamguluyev, R., Hasanova, P., Imanova, T., Mammadova, A., Hajizade, S., & Samadova, Z. (2024). AI-POWERED EDUCATIONAL TOOLS: TRANSFORMING LEARNING IN THE DIGITAL ERA. International Research Journal of Modernization in Engineering Technology and Science, 6, 920-929. https://doi.org/10.56726/IRJMETS65040
Joshi, N., & Joshi, M. (2024). Gamified AI-Driven Assessments. https://doi.org/10.13140/RG.2.2.11415.69289
Khrapatyi, S., Tokarieva, K., Hlushchenko, O., Paramonova, O., & Lvova, I. (2024). Research on performance evaluation of higher vocational education informatization based on data envelopment analysis. STEM Education, 4(1), 51-70. https://doi.org/10.3934/steme.2024004
Mohamed, M., Hidayat, R., Nabilah, N., Sabri, N., Mahmud, M., & Baharuddin, S. (2022). Artificial intelligence in mathematics education: A systematic literature review. International Electronic Journal of Mathematics Education, 17, em0694. https://doi.org/10.29333/iejme/12132
Motseki, P. D. (2021). Identifying and Addressing Errors and Misconceptions in Differential Calculus: A Case Study of National Vocational (Certificate) Students at Technical Vocational and Education College. University of Johannesburg (South Africa).
Page, O. (2024). Preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) checklist. Br J Sports Med, 1001, 58. https://doi.org/10.1136/bjsports-2024-108233
Resch, K., & Schrittesser, I. (2023). Using the Service-Learning approach to bridge the gap between theory and practice in teacher education. International Journal of Inclusive Education, 27(10), 1118-1132.
Saralar-Aras, I., & Schoenberg, Y. C. (2024). Unveiling the synergistic nexus: AI-driven coding integration in mathematics education for enhanced computational thinking and problem-solving. The Mathematical Education, 63(2), 233-254.
Scott, K. W., & Howell, D. (2008). Clarifying Analysis and Interpretation in Grounded Theory: Using a Conditional Relationship Guide and Reflective Coding Matrix. Int J Qual Meth, 7. https://doi.org/10.1177/160940690800700201
Singh, R. J. (2023). Transforming higher education: The power of artificial intelligence. International Journal of Multidisciplinary Research in Arts, Science and Technology, 1(3), 13-18.
Sujo-Montes, L., Tu, C.-H., Armfield, S., & Yen, C.-J. (2021). Assessment and Learning in Knowledge Spaces (ALEKS) Adaptive System Impact on Students’ Perception and Self-Regulated Learning Skills. Education Sciences, 11, 603. https://doi.org/10.3390/educsci11100603
Treve, M. (2024). Integrating Artificial Intelligence in Education: Impacts on Student Learning and Innovation. International Journal of Vocational Education and Training Research, 10, 61-69. https://doi.org/10.11648/j.ijvetr.20241002.14
Wardat, Y., Tashtoush, M., Alali, R., & Saleh, S. (2024). Artificial Intelligence in Education: Mathematics Teachers’ Perspectives, Practices and Challenges. Iraqi Journal for Computer Science and Mathematics, 5, 60-77. https://doi.org/10.52866/ijcsm.2024.05.01.004
Werfhorst, H., Kessenich, E., & Geven, S. (2022). The Digital Divide in Online Education. Inequality in Digital Readiness of Students and Schools. Computers and Education Open, 3, 100100. https://doi.org/10.1016/j.caeo.2022.100100
Xu, Y., Zhu, J., Wang, M., Qian, F., Yang, Y., & Zhang, J. (2024). The Impact of a Digital Game-Based AI Chatbot on Students’ Academic Performance, Higher-Order Thinking, and Behavioral Patterns in an Information Technology Curriculum. Applied Sciences, 14(15).
Refbacks
- There are currently no refbacks.